

    
      
          
            
  
Welcome to KubeEdge’s documentation!


[image: _images/KubeEdge_logo.png]
 [https://kubeedge.io]

KubeEdge is an open source system for extending native containerized
application orchestration capabilities to hosts at Edge.



	KubeEdge Home [https://kubeedge.io]






Getting Started


	Why KubeEdge

	Getting started

	Roadmap






Setup


	Deploying using Keadm

	Deploying Locally

	Upgrading KubeEdge






Configuration


	KubeEdge

	CRI

	Storage






General Components


	Beehive






Cloud Components


	Edge Controller

	CloudHub

	Device Controller






Edge Components


	Edged

	EventBus

	MetaManager

	EdgeHub

	DeviceTwin






Edgesite


	EdgeSite






Mappers


	Bluetooth

	ModBus






Contributing


	Contributing

	Governance

	Maintainer

	Feature Lifecycle






Developer Guide


	Device Management

	MQTT Message Topics

	Unit Test

	Bluetooth Mapper E2E Test

	EdgeMesh guide

	Memory Footprint Test







	FAQ









          

      

      

    

  

    
      
          
            
  
KubeEdge

KubeEdge is an open source system extending native containerized application orchestration and device management to hosts at the Edge. It is built upon Kubernetes and provides core infrastructure support for networking, application deployment and metadata synchronization between cloud and edge. It also supports MQTT and allows developers to author custom logic and enable resource constrained device communication at the Edge. KubeEdge consists of a cloud part and an edge part. Both edge and cloud parts are now open-sourced.


Advantages

The advantages of KubeEdge include mainly:


	Edge Computing

With business logic running at the Edge, much larger volumes of data can be secured & processed locally where the data is produced. This reduces the network bandwidth requirements and consumption between Edge and Cloud. This increases responsiveness, decreases costs, and protects customers’ data privacy.



	Simplified development

Developers can write regular HTTP or MQTT based applications, containerize these, and run them anywhere - either at the Edge or in the Cloud - whichever is more appropriate.



	Kubernetes-native support

With KubeEdge, users can orchestrate apps, manage devices and monitor app and device status on Edge nodes just like a traditional Kubernetes cluster in the Cloud.



	Abundant applications

It is easy to get and deploy existing complicated machine learning, image recognition, event processing and other high-level applications to the Edge.








Components

KubeEdge is composed of these components:


	Edged: an agent that runs on edge nodes and manages containerized applications.


	EdgeHub: a web socket client responsible for interacting with Cloud Service for edge computing (like Edge Controller as in the KubeEdge Architecture). This includes syncing cloud-side resource updates to the edge and reporting edge-side host and device status changes to the cloud.


	CloudHub: a web socket server responsible for watching changes at the cloud side, caching and sending messages to EdgeHub.


	EdgeController: an extended kubernetes controller which manages edge nodes and pods metadata so that the data can be targeted to a specific edge node.


	EventBus: an MQTT client to interact with MQTT servers (mosquitto), offering publish and subscribe capabilities to other components.


	DeviceTwin: responsible for storing device status and syncing device status to the cloud. It also provides query interfaces for applications.


	MetaManager: the message processor between edged and edgehub. It is also responsible for storing/retrieving metadata to/from a lightweight database (SQLite).







Architecture

[image: ../_images/kubeedge_arch.png]KubeEdge Architecture







          

      

      

    

  

    
      
          
            
  
Getting started

KubeEdge is an open source system for extending native containerized application orchestration capabilities to hosts at Edge.

In this quick-start guide, we will explain:


	How to ask questions, build and contribute to KubeEdge.


	A few common ways of deploying KubeEdge.


	Links for further reading.





Dependencies

For cloud side, we need:


	Kubernetes [https://kubernetes.io] cluster




For edge side, we need:


	Container runtimes, now we support:



	Docker [https://www.docker.com]

	Containerd [https://github.com/containerd/containerd]

	Cri-o [https://cri-o.io]

	Virtlet [https://docs.virtlet.cloud]







	MQTT Server(Optional) [https://mosquitto.org]







Get KubeEdge!

You can find the latest KubeEdge release here [https://github.com/kubeedge/kubeedge/releases].

During release, we build tarballs for major platforms and release docker images in kubeedge dockerhub.

If you want to build KubeEdge from source, check this doc.




Deploying KubeEdge

Check setup docs.




Contributing

Contributions are very welcome! See our CONTRIBUTING.md for more information.




Community

KubeEdge is an open source project and we value and welcome new contributors and members
of the community. Here are ways to get in touch with the community:



	Mailing list [https://groups.google.com/forum/#%21forum/kubeedge]

	Slack [https://join.slack.com/t/kubeedge/shared_invite/enQtNjc0MTg2NTg2MTk0LWJmOTBmOGRkZWNhMTVkNGU1ZjkwNDY4MTY4YTAwNDAyMjRkMjdlMjIzYmMxODY1NGZjYzc4MWM5YmIxZjU1ZDI]

	Twitter [https://twitter.com/kubeedge]

	GitHub Issues [https://github.com/kubeedge/kubeedge/issues]











          

      

      

    

  

    
      
          
            
  
Roadmap

This document defines a high level roadmap for KubeEdge development.

The milestones defined in GitHub [https://github.com/kubeedge/kubeedge/milestones] represent the most up-to-date plans.

The roadmap below outlines new features that will be added to KubeEdge.


2021 H1


Core framework


Edge side list-watch


	Support list-watch interface at edge







Custom message transmission between cloud and edge


	Support transmission of custom message between cloud and edge







Support multi-instance cloudcore




Integration and verification of third-party CNI


	Flannel, Calico, etc.







Integration and verification of third-party CSI


	Rook, OpenEBS, etc.







Support managing clusters at edge from cloud (aka. EdgeSite)




Support ingress/gateway at edge.






Maintainability


Deployment optimization


	Easier deployment


	Admission controller automated deployment







Automatic configuration of edge application offline migration time


	Modify Default tolerationSeconds Automatically









IOT Device management


Device Mapper framework standard and framework generator


	Formulate mapper framework standard







Support mappers of more protocols


	OPC-UA mapper


	ONVIF mapper









Security


Complete security vulnerability scanning






Test


Improve the performance and e2e tests with more metrics and scenarios.






Edge-cloud synergy AI


Supports KubeFlow/ONNX/Pytorch/Mindspore




Edge-cloud synergy training and inference






MEC


Cross-edge cloud service discovery




5G network capability exposure








2021 H2


Core framework


Custom message transmission between cloud and edge


	Support CloudEvent protocol







Cross subnet communication of Data plane


	Edge-edge cross subnet


	Edge-cloud cross subnet







Unified Service Mesh support (Integrate with Istio/OSM etc.)




Cloud-edge synergy monitoring


	Provide support with prometheus push-gateway mode


	Data management with support for ingestion of telemetry data and analytics at the edge.









IOT Device management


Device Mapper framework standard and framework generator


	Develop mapper framework generator







Support mappers of more protocols


	GB/T 28181 mapper









Edge-cloud synergy AI


Intelligent edge benchmark






MEC


Cloud-network convergence




Service catalog




Cross-edge cloud application roaming











          

      

      

    

  

    
      
          
            
  
Deploying using Keadm

Keadm is used to install the cloud and edge components of KubeEdge. It is not responsible for installing K8s and runtime, so check dependences section in this doc first.

Please refer kubernetes-compatibility [https://github.com/kubeedge/kubeedge#kubernetes-compatibility] to get Kubernetes compatibility and determine what version of Kubernetes would be installed.


Limitation


	Currently support of keadm is available for Ubuntu and CentOS OS. RaspberryPi supports is in-progress.


	Need super user rights (or root rights) to run.







Setup Cloud Side (KubeEdge Master Node)

By default ports 10000 and 10002 in your cloudcore needs to be accessible for your edge nodes.

Note: port 10002 only needed since 1.3 release.

keadm init will install cloudcore, generate the certs and install the CRDs. It also provides a flag by which a specific version can be set.

IMPORTANT NOTE:


	At least one of kubeconfig or master must be configured correctly, so that it can be used to verify the version and other info of the k8s cluster.


	Please make sure edge node can connect cloud node using local IP of cloud node, or you need to specify public IP of cloud node with --advertise-address flag.


	--advertise-address(only work since 1.3 release) is the address exposed by the cloud side (will be added to the SANs of the CloudCore certificate), the default value is the local IP.




Example:

# keadm init --advertise-address="THE-EXPOSED-IP"(only work since 1.3 release)





Output:

Kubernetes version verification passed, KubeEdge installation will start...
...
KubeEdge cloudcore is running, For logs visit:  /var/log/kubeedge/cloudcore.log








(Only Needed in Pre 1.3 Release) Manually copy certs.tgz from cloud host to edge host(s)

Note: Since release 1.3, feature EdgeNode auto TLS Bootstrapping has been added and there is no need to manually copy certificate.

Now users still need to copy the certs to the edge nodes. In the future, it will support the use of tokens for authentication.

On edge host:

mkdir -p /etc/kubeedge





On cloud host:

cd /etc/kubeedge/
scp -r certs.tgz username@edge_node_ip:/etc/kubeedge





On edge host untar the certs.tgz file

cd /etc/kubeedge
tar -xvzf certs.tgz








Setup Edge Side (KubeEdge Worker Node)


Get Token From Cloud Side

Run keadm gettoken in cloud side will return the token, which will be used when joining edge nodes.

# keadm gettoken
27a37ef16159f7d3be8fae95d588b79b3adaaf92727b72659eb89758c66ffda2.eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1OTAyMTYwNzd9.JBj8LLYWXwbbvHKffJBpPd5CyxqapRQYDIXtFZErgYE








Join Edge Node

keadm join will install edgecore and mqtt. It also provides a flag by which a specific version can be set.

Example:

# keadm join --cloudcore-ipport=192.168.20.50:10000 --token=27a37ef16159f7d3be8fae95d588b79b3adaaf92727b72659eb89758c66ffda2.eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1OTAyMTYwNzd9.JBj8LLYWXwbbvHKffJBpPd5CyxqapRQYDIXtFZErgYE





IMPORTANT NOTE:


	--cloudcore-ipport flag is a mandatory flag.


	If you want to apply certificate for edge node automatically, --token is needed.


	The kubeEdge version used in cloud and edge side should be same.




Output:

Host has mosquit+ already installed and running. Hence skipping the installation steps !!!
...
KubeEdge edgecore is running, For logs visit:  /var/log/kubeedge/edgecore.log








Enable kubectl logs Feature

Before metrics-server deployed, kubectl logs feature must be activated:


	Make sure you can find the kubernetes ca.crt and ca.key files. If you set up your kubernetes cluster by kubeadm , those files will be in /etc/kubernetes/pki/ dir.

ls /etc/kubernetes/pki/







	Set CLOUDCOREIPS env. The environment variable is set to specify the IP address of cloudcore, or a VIP if you have a highly available cluster.

export CLOUDCOREIPS="192.168.0.139"





(Warning: the same terminal is essential to continue the work, or it is necessary to type this command again.) Checking the environment variable with the following command:

echo $CLOUDCOREIPS







	Generate the certificates for CloudStream on cloud node, however, the generation file is not in the /etc/kubeedge/, we need to copy it from the repository which was git cloned from GitHub.
Change user to root:

sudo su





Copy certificates generation file from original cloned repository:

cp $GOPATH/src/github.com/kubeedge/kubeedge/build/tools/certgen.sh /etc/kubeedge/





Change directory to the kubeedge directory:

cd /etc/kubeedge/





Generate certificates from certgen.sh

/etc/kubeedge/certgen.sh stream







	It is needed to set iptables on the host. (This command should be executed on every apiserver deployed node.)(In this case, this the master node, and execute this command by root.)
Run the following command on the host on which each apiserver runs:

Note: You need to set the cloudcoreips variable first

iptables -t nat -A OUTPUT -p tcp --dport 10350 -j DNAT --to $CLOUDCOREIPS:10003






Port 10003 and 10350 are the default ports for the CloudStream and edgecore,
use your own ports if you have changed them.




If you are not sure if you have setting of iptables, and you want to clean all of them.
(If you set up iptables wrongly, it will block you out of your kubectl logs feature)
The following command can be used to clean up iptables:

iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X







	Modify both /etc/kubeedge/config/cloudcore.yaml and /etc/kubeedge/config/edgecore.yaml on cloudcore and edgecore. Set up cloudStream and edgeStream to enable: true. Change the server IP to the cloudcore IP (the same as $CLOUDCOREIPS).

Open the YAML file in cloudcore:

sudo nano /etc/kubeedge/config/cloudcore.yaml





Modify the file in the following part (enable: true):

cloudStream:
  enable: true
  streamPort: 10003
  tlsStreamCAFile: /etc/kubeedge/ca/streamCA.crt
  tlsStreamCertFile: /etc/kubeedge/certs/stream.crt
  tlsStreamPrivateKeyFile: /etc/kubeedge/certs/stream.key
  tlsTunnelCAFile: /etc/kubeedge/ca/rootCA.crt
  tlsTunnelCertFile: /etc/kubeedge/certs/server.crt
  tlsTunnelPrivateKeyFile: /etc/kubeedge/certs/server.key
  tunnelPort: 10004





Open the YAML file in edgecore:

sudo nano /etc/kubeedge/config/edgecore.yaml





Modify the file in the following part (enable: true), (server: 192.168.0.193:10004):

edgeStream:
  enable: true
  handshakeTimeout: 30
  readDeadline: 15
  server: 192.168.0.139:10004
  tlsTunnelCAFile: /etc/kubeedge/ca/rootCA.crt
  tlsTunnelCertFile: /etc/kubeedge/certs/server.crt
  tlsTunnelPrivateKeyFile: /etc/kubeedge/certs/server.key
  writeDeadline: 15







	Restart all the cloudcore and edgecore.

sudo su





cloudCore:

pkill cloudcore
nohup cloudcore > cloudcore.log 2>&1 &





edgeCore:

systemctl restart edgecore.service





If you fail to restart edgecore, check if that is because of kube-proxy and kill it.  kubeedge reject it by default, we use a succedaneum called edgemesh [https://github.com/kubeedge/kubeedge/blob/master/docs/proposals/edgemesh-design]

Note: the importance is to avoid kube-proxy being deployed on edgenode. There are two methods to solve it:


	Add the following settings by calling kubectl edit daemonsets.apps -n kube-system kube-proxy:




affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
          - matchExpressions:
              - key: node-role.kubernetes.io/edge
                operator: DoesNotExist






	If you still want to run kube-proxy, ask edgecore not to check the environment by adding the env variable in edgecore.service :

sudo vi /etc/kubeedge/edgecore.service






	Add the following line into the edgecore.service file:




Environment="CHECK_EDGECORE_ENVIRONMENT=false"






	The final file should look like this:




Description=edgecore.service

[Service]
Type=simple
ExecStart=/root/cmd/ke/edgecore --logtostderr=false --log-file=/root/cmd/ke/edgecore.log
Environment="CHECK_EDGECORE_ENVIRONMENT=false"

[Install]
WantedBy=multi-user.target
















Support Metrics-server in Cloud


	The realization of this function point reuses cloudstream and edgestream modules. So you also need to perform all steps of Enable kubectl logs Feature.


	Since the kubelet ports of edge nodes and cloud nodes are not the same, the current release version of metrics-server(0.3.x) does not support automatic port identification (It is the 0.4.0 feature), so you need to manually compile the image from master branch yourself now.

Git clone latest metrics server repository:

git clone https://github.com/kubernetes-sigs/metrics-server.git





Go to the metrics server directory:

cd metrics-server





Make the docker image:

make container





Check if you have this docker image:

docker images









|                  REPOSITORY                           |                    TAG                   |   IMAGE ID   |     CREATE     |  SIZE  |
|-------------------------------------------------------|------------------------------------------|--------------|----------------|--------|
| gcr.io/k8s-staging-metrics-serer/ metrics-serer-amd64 | 6d92704c5a68cd29a7a81bce68e6c2230c7a6912 | a24f71249d69 | 19 seconds ago | 57.2MB |
| metrics-server-kubeedge                               |                 latest                   | aef0fa7a834c | 28 seconds ago | 57.2MB |

Make sure you change the tag of image by using its IMAGE ID to be compactable with image name in yaml file.

```bash
docker tag a24f71249d69 metrics-server-kubeedge:latest
```






	Apply the deployment yaml. For specific deployment documents, you can refer to https://github.com/kubernetes-sigs/metrics-server/tree/master/manifests.

Note: those iptables below must be applyed on the machine (to be exactly network namespace, so metrics-server needs to run in hostnetwork mode also) metric-server runs on.

iptables -t nat -A OUTPUT -p tcp --dport 10350 -j DNAT --to $CLOUDCOREIPS:10003





(To direct the request for metric-data from edgecore:10250 through tunnel between cloudcore and edgecore, the iptables is vitally important.)

Before you deploy metrics-server, you have to make sure that you deploy it on the node which has apiserver deployed on. In this case, that is the master node. As a consequence, it is needed to make master node schedulable by the following command:

kubectl taint nodes --all node-role.kubernetes.io/master-





Then, in the deployment.yaml file, it must be specified that metrics-server is deployed on master node.
(The hostname is chosen as the marked label.)
In metrics-server-deployment.yaml

    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              #Specify which label in [kubectl get nodes --show-labels] you want to match
              - key: kubernetes.io/hostname
                operator: In
                values:
                #Specify the value in key
                - charlie-latest









IMPORTANT NOTE:


	Metrics-server needs to use hostnetwork network mode.


	Use the image compiled by yourself and set imagePullPolicy to Never.


	Enable the feature of –kubelet-use-node-status-port for Metrics-server

Those settings need to be written in deployment yaml (metrics-server-deployment.yaml) file like this:

      volumes:
      # mount in tmp so we can safely use from-scratch images and/or read-only containers
      - name: tmp-dir
        emptyDir: {}
      hostNetwork: true                          #Add this line to enable hostnetwork mode
      containers:
      - name: metrics-server
        image: metrics-server-kubeedge:latest    #Make sure that the REPOSITORY and TAG are correct
        # Modified args to include --kubelet-insecure-tls for Docker Desktop (don't use this flag with a real k8s cluster!!)
        imagePullPolicy: Never                   #Make sure that the deployment uses the image you built up
        args:
          - --cert-dir=/tmp
          - --secure-port=4443
          - --v=2
          - --kubelet-insecure-tls
          - --kubelet-preferred-address-types=InternalDNS,InternalIP,ExternalIP,Hostname
          - --kubelet-use-node-status-port       #Enable the feature of --kubelet-use-node-status-port for Metrics-server
        ports:
        - name: main-port
          containerPort: 4443
          protocol: TCP














Reset KubeEdge Master and Worker nodes


Master

keadm reset will stop cloudcore and delete KubeEdge related resources from Kubernetes master like kubeedge namespace. It doesn’t uninstall/remove any of the pre-requisites.

It provides a flag for users to specify kubeconfig path, the default path is /root/.kube/config.

Example:

 # keadm reset --kube-config=$HOME/.kube/config








Node

keadm reset will stop edgecore and it doesn’t uninstall/remove any of the pre-requisites.









          

      

      

    

  

    
      
          
            
  
Deploying Locally

Deploying KubeEdge locally is used to test, never use this way in production environment.


Limitation


	Need super user rights (or root rights) to run.







Setup Cloud Side (KubeEdge Master Node)


Create CRDs

kubectl apply -f https://raw.githubusercontent.com/kubeedge/kubeedge/master/build/crds/devices/devices_v1alpha2_device.yaml
kubectl apply -f https://raw.githubusercontent.com/kubeedge/kubeedge/master/build/crds/devices/devices_v1alpha2_devicemodel.yaml
kubectl apply -f https://raw.githubusercontent.com/kubeedge/kubeedge/master/build/crds/reliablesyncs/cluster_objectsync_v1alpha1.yaml
kubectl apply -f https://raw.githubusercontent.com/kubeedge/kubeedge/master/build/crds/reliablesyncs/objectsync_v1alpha1.yaml








Prepare config file

# cloudcore --minconfig > cloudcore.yaml





please refer to configuration for cloud for details.




Run

# cloudcore --config cloudcore.yaml





Run cloudcore -h to get help info and add options if needed.






Setup Edge Side (KubeEdge Worker Node)


Prepare config file


	generate config file




# edgecore --minconfig > edgecore.yaml






	get token value at cloud side:




# kubectl get secret -nkubeedge tokensecret -o=jsonpath='{.data.tokendata}' | base64 -d






	update token value in edgecore config file:




# sed -i -e "s|token: .*|token: ${token}|g" edgecore.yaml





The token is what above step get.

please refer to configuration for edge for details.




Run

If you want to run cloudcore and edgecore at the same host, run following command first:

# export CHECK_EDGECORE_ENVIRONMENT="false"





Start edgecore:

# edgecore --config edgecore.yaml





Run edgecore -h to get help info and add options if needed.









          

      

      

    

  

    
      
          
            
  
Upgrading KubeEdge

Please refer to following guide to upgrade your KubeEdge cluster.


Backup


Database

Backup edgecore database at each edge node:

$ mkdir -p /tmp/kubeedge_backup
$ cp /var/lib/kubeedge/edgecore.db /tmp/kubeedge_backup/








Config(Optional)

You can keep old config to save some custom changes as you wish.

Note:

After upgrading, some options may be deleted and some may be added, please don’t use old config directly.




Device related(Optional)

If you upgrade from 1.3 to 1.4, please note that we upgrade device API from v1alpha1 to v1alpha2.

You need to install Device v1alpha2 [https://github.com/kubeedge/kubeedge/blob/release-1.4/build/crds/devices/devices_v1alpha2_device.yaml]
and DeviceModel v1alpha2 [https://github.com/kubeedge/kubeedge/blob/release-1.4/build/crds/devices/devices_v1alpha2_devicemodel.yaml],
and manually convert their existing custom resources from v1alpha1 to v1alpha2.

It’s recommended to keep v1alpha1 CRD and custom resources in the cluster or exported somewhere, in case any rollback is needed.






Stop Processes

Stop edgecore processes one by one, after ensuring all edgecore processes are stopped, stop cloudcore.

The way to stop depends on how you deploy:


	for binary or “keadm”: use kill


	for “systemd”: use systemctl







Clean up

$ rm -rf /var/lib/kubeedge /etc/kubeedge








Restore Database

Restore database at each edge node:

$ mkdir -p /var/lib/kubeedge
$ mv /tmp/kubeedge_backup/edgecore.db /var/lib/kubeedge/








Deploy

Read the setup for deployment.







          

      

      

    

  

    
      
          
            
  
KubeEdge Configuration

KubeEdge requires configuration on both Cloud side (KubeEdge Master) and Edge side (KubeEdge Worker Node)


Configuration Cloud side (KubeEdge Master)

Setting up cloud side requires two steps


	Modification of the configuration files


	Edge node will be auto registered by default. Users can still choose to register manually.





Modification of the configuration file

Cloudcore requires changes in cloudcore.yaml configuration file.

Create and set cloudcore config file

Create the /etc/kubeedge/config folder

# the default configuration file path is '/etc/kubeedge/config/cloudcore.yaml'
# also you can specify it anywhere with '--config'
mkdir -p /etc/kubeedge/config/





Either create a minimal configuration with command ~/kubeedge/cloudcore --minconfig

~/kubeedge/cloudcore --minconfig > /etc/kubeedge/config/cloudcore.yaml





or a full configuration with command ~/kubeedge/cloudcore --defaultconfig

~/kubeedge/cloudcore --defaultconfig > /etc/kubeedge/config/cloudcore.yaml





Edit the configuration file

vim /etc/kubeedge/config/cloudcore.yaml





Verify the configurations before running cloudcore


Modification in cloudcore.yaml

In the cloudcore.yaml, modify the below settings.


	Either kubeAPIConfig.kubeConfig or kubeAPIConfig.master : This would be the path to your kubeconfig file. It might be either

/root/.kube/config





or

/home/<your_username>/.kube/config





depending on where you have setup your kubernetes by performing the below step:

To start using your cluster, you need to run the following as a regular user:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config





By default, cloudcore use https connection to Kubernetes apiserver. If master and kubeConfig are both set, master will override any value in kubeconfig.



	Before KubeEdge v1.3: check whether the cert files for modules.cloudhub.tlsCAFile, modules.cloudhub.tlsCertFile,modules.cloudhub.tlsPrivateKeyFile exists.

From KubeEdge v1.3: just skip the above check. If you configure the CloudCore certificate manually, you must check if the path of certificate is right.

Note: If your KubeEdge version is before the v1.3, then just skip the step 3.



	Configure all the IP addresses of CloudCore which are exposed to the edge nodes(like floating IP) in the advertiseAddress, which will be added to SANs in cert of cloudcore.

modules:
  cloudHub:
    advertiseAddress:
    - 10.1.11.85














Adding the edge nodes (KubeEdge Worker Node) on the Cloud side (KubeEdge Master)

Node registration can be completed in two ways:


	Node - Automatic Registration


	Node - Manual Registration





Node - Automatic Registration

Edge node can be registered automatically if the value of field modules.edged.registerNode in edgecore’s config is set to true.

modules:
  edged:
    registerNode: true








Node - Manual Registration


Copy $GOPATH/src/github.com/kubeedge/kubeedge/build/node.json to your working directory and change metadata.name to the name of edge node

mkdir -p ~/kubeedge/yaml
cp $GOPATH/src/github.com/kubeedge/kubeedge/build/node.json ~/kubeedge/yaml





Node.json

{
  "kind": "Node",
  "apiVersion": "v1",
  "metadata": {
    "name": "edge-node",
    "labels": {
      "name": "edge-node",
      "node-role.kubernetes.io/edge": ""
    }
  }
}





Note:


	the metadata.name must keep in line with edgecore’s config modules.edged.hostnameOverride.


	Make sure role is set to edge for the node. For this a key of the form "node-role.kubernetes.io/edge" must be present in metadata.labels.
If role is not set for the node, the pods, configmaps and secrets created/updated in the cloud cannot be synced with the node they are targeted for.







Deploy edge node (you must run the command on cloud side)

kubectl apply -f ~/kubeedge/yaml/node.json










Check the existence of certificates (cloud side) (Required for pre 1.3 releases)

Note: From KubeEdge v1.3, just skip the follow steps of checking the existence of certificates. However, if you configure the cloudcore certificate manually, you must check if the path of certificate is right. And there is no need to transfer certificate file from the cloud side to edge side.

RootCA certificate and a cert/key pair is required to have a setup for KubeEdge. Same cert/key pair can be used in both cloud and edge.

cert/key should exist in /etc/kubeedge/ca and /etc/kubeedge/certs. Otherwise please refer to generate certs [https://github.com/kubeedge/kubeedge/blob/release-1.3/docs/setup/kubeedge_install_source.md#generate-certificates] to generate them.
You need to copy these files to the corresponding directory on edge side.

Create the certs.tgz by

cd /etc/kubeedge
tar -cvzf certs.tgz certs/








Transfer certificate file from the cloud side to edge side

Transfer certificate files to the edge node, because edgecore uses these certificate files to connect to cloudcore

This can be done by utilising scp

cd /etc/kubeedge/
scp certs.tgz username@destination:/etc/kubeedge





Here, we are copying the certs.tgz from the cloud side to the edge node in the /etc/kubeedge directory. You may copy in any directory and then move the certs to /etc/kubeedge folder.

At this point we have completed all configuration changes related to cloudcore.








Configuration Edge side (KubeEdge Worker Node)


Manually copy certs.tgz from cloud host to edge host(s)  (Required for pre 1.3 releases)

Note:  From KubeEdge v1.3 just skip this step, the edgecore will apply for the certificate automatically from the cloudcore when starting. You can also configure the local certificate(The CA certificate in edge site must be the same with cloudcore now). Any directory is OK as long as you configure it in the edgecore.yaml below.

On edge host

mkdir -p /etc/kubeedge





On edge host untar the certs.tgz file

cd /etc/kubeedge
tar -xvzf certs.tgz








Create and set edgecore config file

Create the /etc/kubeedge/config folder

    # the default configration file path is '/etc/kubeedge/config/edgecore.yaml'
    # also you can specify it anywhere with '--config'
    mkdir -p /etc/kubeedge/config/





Either create a minimal configuration with command ~/kubeedge/edgecore --minconfig

    ~/kubeedge/edgecore --minconfig > /etc/kubeedge/config/edgecore.yaml





or a full configuration with command ~/kubeedge/edgecore --defaultconfig

~/kubeedge/edgecore --defaultconfig > /etc/kubeedge/config/edgecore.yaml





Edit the configuration file

    vim /etc/kubeedge/config/edgecore.yaml





Verify the configurations before running edgecore


Modification in edgecore.yaml


	Check modules.edged.podSandboxImage : This is very important and must be set correctly.

To check the architecture of your machine run the following

getconf LONG_BIT






	kubeedge/pause-arm:3.1 for arm arch


	kubeedge/pause-arm64:3.1 for arm64 arch


	kubeedge/pause:3.1 for x86 arch






	Before KubeEdge v1.3: check whether the cert files for modules.edgehub.tlsCaFile and modules.edgehub.tlsCertFile and modules.edgehub.tlsPrivateKeyFile exists. If those files not exist, you need to copy them from cloud side.

From KubeEdge v1.3: just skip above check about cert files. However, if you configure the edgecore certificate manually, you must check if the path of certificate is right.



	Update the IP address and port of the KubeEdge CloudCore in the modules.edgehub.websocket.server and modules.edgehub.quic.server field. You need set cloudcore ip address.


	Configure the desired container runtime to be used as either docker or remote (for all CRI based runtimes including containerd). If this parameter is not specified docker runtime will be used by default

runtimeType: docker





or

runtimeType: remote







	If your runtime-type is remote, follow this guide KubeEdge CRI Configuration to setup KubeEdge with the remote/CRI based runtimes.

Note: If your KubeEdge version is before the v1.3, then just skip the steps 6-7.



	Configure the IP address and port of the KubeEdge cloudcore in the modules.edgehub.httpServer which is used to apply for the certificate. For example:

modules:
  edgeHub:
    httpServer: https://10.1.11.85:10002







	Configure the token.

kubectl get secret tokensecret -n kubeedge -oyaml





Then you get it like this:

apiVersion: v1
data:
  tokendata: ODEzNTZjY2MwODIzMmIxMTU0Y2ExYmI5MmRlZjY4YWQwMGQ3ZDcwOTIzYmU3YjcyZWZmOTVlMTdiZTk5MzdkNS5leUpoYkdjaU9pSklVekkxTmlJc0luUjVjQ0k2SWtwWFZDSjkuZXlKbGVIQWlPakUxT0RreE5qRTVPRGw5LmpxNENXNk1WNHlUVkpVOWdBUzFqNkRCdE5qeVhQT3gxOHF5RnFfOWQ4WFkK
kind: Secret
metadata:
  creationTimestamp: "2020-05-10T01:53:10Z"
  name: tokensecret
  namespace: kubeedge
  resourceVersion: "19124039"
  selfLink: /api/v1/namespaces/kubeedge/secrets/tokensecret
  uid: 48429ce1-2d5a-4f0e-9ff1-f0f1455a12b4
type: Opaque





Decode the tokendata field by base64:

echo ODEzNTZjY2MwODIzMmIxMTU0Y2ExYmI5MmRlZjY4YWQwMGQ3ZDcwOTIzYmU3YjcyZWZmOTVlMTdiZTk5MzdkNS5leUpoYkdjaU9pSklVekkxTmlJc0luUjVjQ0k2SWtwWFZDSjkuZXlKbGVIQWlPakUxT0RreE5qRTVPRGw5LmpxNENXNk1WNHlUVkpVOWdBUzFqNkRCdE5qeVhQT3gxOHF5RnFfOWQ4WFkK |base64 -d
# then we get:
81356ccc08232b1154ca1bb92def68ad00d7d70923be7b72eff95e17be9937d5.eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1ODkxNjE5ODl9.jq4CW6MV4yTVJU9gAS1j6DBtNjyXPOx18qyFq_9d8XY





Copy the decoded string to the edgecore.yaml just like follow:

modules:
  edgeHub:
    token: 81356ccc08232b1154ca1bb92def68ad00d7d70923be7b72eff95e17be9937d5.eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1ODkxNjE5ODl9.jq4CW6MV4yTVJU9gAS1j6DBtNjyXPOx18qyFq_9d8XY












Configuring MQTT mode

The Edge part of KubeEdge uses MQTT for communication between deviceTwin and devices. KubeEdge supports 3 MQTT modes (internalMqttMode, bothMqttMode, externalMqttMode), set mqttMode field in edgecore.yaml to the desired mode.


	internalMqttMode: internal mqtt broker is enabled (mqttMode=0).


	bothMqttMode: internal as well as external broker are enabled (mqttMode=1).


	externalMqttMode: only external broker is enabled (mqttMode=2).




To use KubeEdge in double mqtt or external mode, you need to make sure that mosquitto or emqx edge is installed on the edge node as an MQTT Broker.

At this point we have completed all configuration changes related to edgecore.











          

      

      

    

  

    
      
          
            
  
KubeEdge runtime configuration


containerd

Docker 18.09 and up ship with containerd, so you should not need to install it manually. If you do not have containerd, you may install it by running the following:

# Install containerd
apt-get update && apt-get install -y containerd.io

# Configure containerd
mkdir -p /etc/containerd
containerd config default > /etc/containerd/config.toml

# Restart containerd
systemctl restart containerd





When using containerd shipped with Docker, the cri plugin is disabled by default. You will need to update containerd’s configuration to enable KubeEdge to use containerd as its runtime:

# Configure containerd
mkdir -p /etc/containerd
containerd config default > /etc/containerd/config.toml





Update the edgecore config file edgecore.yaml, specifying the following parameters for the containerd-based runtime:

remoteRuntimeEndpoint: unix:///var/run/containerd/containerd.sock
remoteImageEndpoint: unix:///var/run/containerd/containerd.sock
runtimeRequestTimeout: 2
podSandboxImage: k8s.gcr.io/pause:3.2
runtimeType: remote





By default, the cgroup driver of cri is configured as cgroupfs. If this is not the case, you can switch to systemd manually in edgecore.yaml:

modules:
  edged:
    cgroupDriver: systemd





Set systemd_cgroup to true in containerd’s configuration file (/etc/containerd/config.toml), and then restart containerd:

# /etc/containerd/config.toml
systemd_cgroup = true





# Restart containerd
systemctl restart containerd





Create the nginx application and check that the container is created with containerd on the edge side:

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/deployment.yaml
deployment.apps/nginx-deployment created

ctr --namespace=k8s.io container ls
CONTAINER                                                           IMAGE                              RUNTIME
41c1a07fe7bf7425094a9b3be285c312127961c158f30fc308fd6a3b7376eab2    docker.io/library/nginx:1.15.12    io.containerd.runtime.v1.linux





NOTE: since cri doesn’t support multi-tenancy while containerd does, the namespace for containers are set to “k8s.io” by default. There is not a way to change that until support in cri [https://github.com/containerd/cri/pull/1462] has been implemented.




CRI-O

Follow the CRI-O install guide [https://github.com/cri-o/cri-o/blob/master/install] to setup CRI-O.

If your edge node is running on the ARM platform and your distro is ubuntu18.04, you might need to build the binaries from source and then install, since CRI-O packages are not available in the Kubic [https://build.opensuse.org/project/show/devel:kubic:libcontainers:stable] repository for this combination.

git clone https://github.com/cri-o/cri-o
cd cri-o
make
sudo make install
# generate and install configuration files
sudo make install.config





Set up CNI networking by following this guide: setup CNI [https://github.com/cri-o/cri-o/blob/master/contrib/cni/README].
Update the edgecore config file, specifying the following parameters for the CRI-O-based runtime:

remoteRuntimeEndpoint: unix:///var/run/crio/crio.sock
remoteImageEndpoint: unix:////var/run/crio/crio.sock
runtimeRequestTimeout: 2
podSandboxImage: k8s.gcr.io/pause:3.2
runtimeType: remote





By default, CRI-O uses cgroupfs as a cgroup driver manager. If you want to switch to systemd instead, update the CRI-O config file (/etc/crio/crio.conf.d/00-default.conf):

# Cgroup management implementation used for the runtime.
cgroup_manager = "systemd"





NOTE: the pause image should be updated if you are on ARM platform and the pause image you are using is not a multi-arch image. To set the pause image, update the CRI-O config file:

pause_image = "k8s.gcr.io/pause-arm64:3.1"





Remember to update edgecore.yaml as well for your cgroup driver manager:

modules:
  edged:
    cgroupDriver: systemd





Start CRI-O and edgecore services (assume both services are taken care of by systemd),

sudo systemctl daemon-reload
sudo systemctl enable crio
sudo systemctl start crio
sudo systemctl start edgecore





Create the application and check that the container is created with CRI-O on the edge side:

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/deployment.yaml
deployment.apps/nginx-deployment created

# crictl ps
CONTAINER ID        IMAGE               CREATED             STATE               NAME                ATTEMPT             POD ID
41c1a07fe7bf7       f6d22dec9931b       2 days ago          Running             nginx               0                   51f727498b06f








Kata Containers

Kata Containers is a container runtime created to address security challenges in the multi-tenant, untrusted cloud environment. However, multi-tenancy support is still in KubeEdge’s backlog [https://github.com/kubeedge/kubeedge/issues/268]. If you have a downstream customized KubeEdge which supports multi-tenancy already then Kata Containers is a good option for a lightweight and secure container runtime.

Follow the install guide [https://github.com/kata-containers/documentation/blob/master/how-to/containerd-kata] to install and configure containerd and  Kata Containers.

If you have “kata-runtime” installed, run this command to check if your host system can run and create a Kata Container:

kata-runtime kata-check





RuntimeClass is a feature for selecting the container runtime configuration to use to run a pod’s containers that is supported since containerd v1.2.0.  If your containerd version is later than v1.2.0, you have two choices to configure containerd to use Kata Containers:


	Kata Containers as a RuntimeClass


	Kata Containers as a runtime for untrusted workloads




Suppose you have configured Kata Containers as the runtime for untrusted workloads. In order to verify whether it works on your edge node, you can run:

cat nginx-untrusted.yaml
apiVersion: v1
kind: Pod
metadata:
  name: nginx-untrusted
  annotations:
    io.kubernetes.cri.untrusted-workload: "true"
spec:
  containers:
  - name: nginx
    image: nginx





kubectl create -f nginx-untrusted.yaml

# verify the container is running with qemu hypervisor on edge side,
ps aux | grep qemu
root      3941  3.0  1.0 2971576 174648 ?      Sl   17:38   0:02 /usr/bin/qemu-system-aarch64

crictl pods
POD ID              CREATED              STATE               NAME                NAMESPACE           ATTEMPT
b1c0911644cb9       About a minute ago   Ready               nginx-untrusted     default             0








Virtlet

Make sure no libvirt is running on the worker nodes.


Steps


	Install CNI plugin:

Download CNI plugin release and extract it:

$ wget https://github.com/containernetworking/plugins/releases/download/v0.8.2/cni-plugins-linux-amd64-v0.8.2.tgz

# Extract the tarball
$ mkdir cni
$ tar -zxvf v0.2.0.tar.gz -C cni

$ mkdir -p /opt/cni/bin
$ cp ./cni/* /opt/cni/bin/





Configure CNI plugin:

$ mkdir -p /etc/cni/net.d/

$ cat >/etc/cni/net.d/bridge.conf <<EOF
{
  "cniVersion": "0.3.1",
  "name": "containerd-net",
  "type": "bridge",
  "bridge": "cni0",
  "isGateway": true,
  "ipMasq": true,
  "ipam": {
    "type": "host-local",
    "subnet": "10.88.0.0/16",
    "routes": [
      { "dst": "0.0.0.0/0" }
    ]
  }
}
EOF







	Setup VM runtime:
Use the script hack/setup-vmruntime.sh to set up a VM runtime. It makes use of the Arktos Runtime release to start three containers:

 vmruntime_vms
 vmruntime_libvirt
 vmruntime_virtlet

















          

      

      

    

  

    
      
          
            
  
KubeEdge Volume Support

Consider use case at edge side, we only support following volume types, all of those are same as Kubernetes:



	configMap [https://kubernetes.io/docs/concepts/storage/volumes/#configmap]

	csi [https://kubernetes.io/docs/concepts/storage/volumes/#csi]

	downwardApi [https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi]

	emptyDir [https://kubernetes.io/docs/concepts/storage/volumes/#emptydir]

	hostPath [https://kubernetes.io/docs/concepts/storage/volumes/#hostpath]

	projected [https://kubernetes.io/docs/concepts/storage/volumes/#projected]

	secret [https://kubernetes.io/docs/concepts/storage/volumes/#secret]





If you want to want more volume types support, please file an issue and comment use case, we will support it if necessary.





          

      

      

    

  

    
      
          
            
  
Beehive


Beehive Overview

Beehive is a messaging framework based on go-channels for communication between modules of KubeEdge. A module registered with beehive can communicate with other beehive modules if the name with which other beehive module is registered or the name of the group of the module is known.
Beehive supports following module operations:


	Add Module


	Add Module to a group


	CleanUp (remove a module from beehive core and all groups)




Beehive supports following message operations:


	Send to a module/group


	Receive by a module


	Send Sync to a module/group


	Send Response to a sync message







Message Format

Message has 3 parts


	Header:


	ID: message ID (string)


	ParentID: if it is a response to a sync message then parentID exists (string)


	TimeStamp: time when message was generated (int)


	Sync: flag to indicate if message is of type sync (bool)






	Route:


	Source: origin of message (string)


	Group: the group to which the message has to be broadcasted (string)


	Operation: what’s the operation on the resource (string)


	Resource: the resource to operate on (string)






	Content: content of the message (interface{})







Register Module


	On starting edgecore,  each module tries to register itself with the beehive core.


	Beehive core maintains a map named modules which has module name as key and implementation of module interface as value.


	When a module tries to register itself with beehive core, beehive core checks from already loaded modules.yaml config file to check if the module is enabled. If it is enabled, it is added in the modules map or else it is added in the disabled modules map.







Channel Context Structure Fields


(Important for understanding beehive operations)


	channels: channels is a map of string(key) which is name of module and chan(value) of message which will be used to send message to the respective module.


	chsLock: lock for channels map


	typeChannels: typeChannels is a map of string(key)which is group name and (map of string(key) to chan(value) of message ) (value) which is map of name of each module in the group to the channels of corresponding module.


	typeChsLock: lock for typeChannels map


	anonChannels: anonChannels is a map of string(parentid) to chan(value) of message which will be used for sending response for a sync message.


	anonChsLock: lock for anonChannels map









Module Operations


Add Module


	Add module operation first creates a new channel of message type.


	Then the module name(key) and its channel(value) is added in the channels map of channel context structure.


	Eg: add edged module




coreContext.Addmodule(“edged”)








Add Module to Group


	addModuleGroup first gets the channel of a module from the channels map.


	Then the module and its channel is added in the typeChannels map where key is the group and in the value is a map in which (key is module name and value is the channel).


	Eg: add edged in edged group. Here 1st edged is module name and 2nd edged is the group name.




coreContext.AddModuleGroup(“edged”,”edged”)








CleanUp


	CleanUp deletes the module from channels map and deletes the module from all groups(typeChannels map).


	Then the channel associated with the module is closed.


	Eg: CleanUp edged module




coreContext.CleanUp(“edged”)










Message Operations


Send to a Module


	Send gets the channel of a module from channels map.


	Then the message is put on the channel.


	Eg: send message to edged.




coreContext.Send(“edged”,message)








Send to a Group


	SendToGroup gets all modules(map) from the typeChannels map.


	Then it iterates over the map and sends the message on the channels of all modules in the map.


	Eg: message to be sent to all modules in edged group.




coreContext.SendToGroup(“edged”,message) message will be sent to all modules in edged group.








Receive by a Module


	Receive gets the channel of a module from channels map.


	Then it waits for a message to arrive on that channel and returns the message. Error is returned if there is any.


	Eg: receive message for edged module




msg, err := coreContext.Receive("edged")








SendSync to a Module


	SendSync takes 3 parameters, (module, message and timeout duration)


	SendSync first gets the channel of the module from the channels map.


	Then the message is put on the channel.


	Then a new channel of message is created and is added in anonChannels map where key is the messageID.


	Then it waits for the message(response) to be received on the anonChannel it created till timeout.


	If message is received before timeout, message is returned with nil error or else timeout error is returned.


	Eg: send sync to edged with timeout duration 60 seconds




response, err := coreContext.SendSync("edged",message,60*time.Second)








SendSync to a Group


	Get the list of modules from typeChannels map for the group.


	Create a channel of message with size equal to the number of modules in that group and put in anonChannels map as value with key as messageID.


	Send the message on channels of all the modules.


	Wait till timeout. If the length of anonChannel = no of modules in that group, check if all the messages in the channel have parentID = messageID. If no return error else return nil error.


	If timeout is reached,return timeout error.


	Eg: send sync message to edged group with timeout duration 60 seconds




err := coreContext.SendToGroupSync("edged",message,60*time.Second)








SendResp to a sync message


	SendResp is used to send response for a sync message.


	The messageID for which response is sent needs to be in the parentID of the response message.


	When SendResp is called, it checks if for the parentID of response message , there exists a channel is anonChannels.


	If channel exists, message(response) is sent on that channel.


	Or else error is logged.




coreContext.SendResp(respMessage)













          

      

      

    

  

    
      
          
            
  
Edge Controller


Edge Controller Overview

EdgeController is the bridge between Kubernetes Api-Server and edgecore




Operations Performed By Edge Controller

The following are the functions performed by Edge controller :-


	Downstream Controller: Sync add/update/delete event to edgecore from K8s Api-server


	Upstream Controller: Sync watch and Update status of resource and events(node, pod and configmap) to K8s-Api-server and also subscribe message from edgecore


	Controller Manager: Creates manager Interface which implements events for managing ConfigmapManager, LocationCache and podManager







Downstream Controller:


Sync add/update/delete event to edge


	Downstream controller: Watches K8S-Api-server and sends updates to edgecore via cloudHub


	Sync (pod, configmap, secret) add/update/delete event to edge via cloudHub


	Creates Respective manager (pod, configmap, secret) for handling events by calling manager interface


	Locates configmap and secret should be send to which node




[image: ../../_images/DownstreamController.png]Downstream Controller






Upstream Controller:


Sync watch and Update status of resource and events


	UpstreamController receives messages from edgecore and sync the updates to K8S-Api-server


	Creates stop channel to dispatch and stop event to handle pods, configMaps, node and secrets


	Creates message channel to update Nodestatus, Podstatus, Secret and configmap related events


	Gets Podcondition information like Ready, Initialized, Podscheduled and Unschedulable details


	Below is the information for PodCondition


	Ready: PodReady means the pod is able to service requests and should be added to the load balancing pools for all matching services


	PodScheduled: It represents status of the scheduling process for this pod


	Unschedulable: It means scheduler cannot schedule the pod right now, may be due to insufficient resources in the cluster


	Initialized: It means that all Init containers in the pod have started successfully


	ContainersReady: It indicates whether all containers in the pod are ready






	Below is the information for PodStatus


	PodPhase: Current condition of the pod


	Conditions: Details indicating why the pod is in this condition


	HostIP: IP address of the host to which pod is assigned


	PodIp: IP address allocated to the Pod


	QosClass: Assigned to the pod based on resource requirement




[image: ../../_images/UpstreamController.png]Upstream Controller










Controller Manager:


Creates manager Interface and implements ConfigmapManager, LocationCache and podManager


	Manager defines the Interface of a manager, ConfigManager, Podmanager, secretmanager implements it


	Manages OnAdd, OnUpdate and OnDelete events which will be updated to the respective edge node from the K8s-Api-server


	Creates an eventManager(configMaps, pod, secrets) which will start a CommonResourceEventHandler, NewListWatch and a newShared Informer for each event to Sync(add/update/delete)event(pod, configmap, secret) to edgecore via cloudHub


	Below is the List of handlers created by controller Manager


	CommonResourceEventHandler: NewcommonResourceEventHandler creates CommonResourceEventHandler used for Configmap and pod Manager


	NewListWatch: Creates a new ListWatch from the specified client resource namespace and field selector


	NewSharedInformer: Creates a new Instance for the Listwatcher
















          

      

      

    

  

    
      
          
            
  
CloudHub


CloudHub Overview

CloudHub is one module of cloudcore and is the mediator between Controllers and the Edge side. It supports both websocket based connection as well as a QUIC [https://quicwg.org/ops-drafts/draft-ietf-quic-applicability.html] protocol access at the same time.
The edgehub can choose one of the protocols to access to the cloudhub. CloudHub’s function is to enable the communication between edge and the Controllers.

The connection to the edge(through EdgeHub module) is done through the HTTP over websocket connection.
For internal communication it directly communicates with the Controllers.
All the requests sent to CloudHub are of context object which are stored in channelQ along with the
mapped channels of event object marked to its nodeID.

The main functions performed by CloudHub are :-


	Get message context and create ChannelQ for events


	Create http connection over websocket


	Serve websocket connection


	Read message from edge


	Write message to edge


	Publish message to Controller





Get message context and create ChannelQ for events:

The context object is stored in a channelQ.
For all nodeID channel is created and the message is converted to event object
Event object is then passed through the channel.




Create http connection over websocket:


	TLS certificates are loaded through the path provided in the context object


	HTTP server is started with TLS configurations


	Then HTTP connection is upgraded to websocket connection receiving conn object.


	ServeConn function serves all the incoming connections







Read message from edge:


	First a deadline is set for keepalive interval


	Then the JSON message from connection is read


	After that Message Router details are set


	Message is then converted to event object for cloud internal communication


	In the end the event is published to Controllers







Write Message to Edge:


	First all event objects are received for the given nodeID


	The existence of same request and the liveness of the node is checked


	The event object is converted to message structure


	Write deadline is set. Then the message is passed to the websocket connection







Publish Message to Controllers:


	A default message with timestamp, clientID and event type is sent to controller
every time a request is made to websocket connection


	If the node gets disconnected then error is thrown and an event describing
node failure is published to the controller.









Usage

The CloudHub can be configured in three ways as mentioned below :


	Start the websocket server only: Click here to see the details.


	Start the quic server only: Click here to see the details.


	Start the websocket and quic server at the same time: Click here to see the details










          

      

      

    

  

    
      
          
            
  
Device Controller


Device Controller Overview

The device controller is the cloud component of KubeEdge which is responsible for device management. Device management in KubeEdge is implemented by making use of Kubernetes
Custom Resource Definitions (CRDs) [https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/] to describe device metadata/status and device controller to synchronize these device updates between edge and cloud.
The device controller starts two separate goroutines called upstream controller and downstream controller. These are not separate controllers as such but named here for clarity.

The device controller makes use of device model and device instance to implement device management :


	Device Model: A device model describes the device properties exposed by the device and property visitors to access these properties. A device model is like a reusable template using which many devices can be created and managed.
Details on device model definition can be found here.


	Device Instance: A device instance represents an actual device object. It is like an instantiation of the device model and references properties defined in the model. The device spec is static while the device status contains dynamically changing data like the desired state of a device property and the state reported by the device.
Details on device instance definition can be found here.




Note: Sample device model and device instance for a few protocols can be found at $GOPATH/src/github.com/kubeedge/kubeedge/build/crd-samples/devices

[image: ../../_images/device-crd-model.png]Device Model




Operations Performed By Device Controller

The following are the functions performed by the device controller :-


	Downstream Controller: Synchronize the device updates from the cloud to the edge node, by watching on K8S API server


	Upstream Controller: Synchronize the device updates from the edge node to the cloud using device twin component







Upstream Controller:

The upstream controller watches for updates from the edge node and applies these updates against the API server in the cloud. Updates are categorized below along with the possible
actions that the upstream controller can take:




	Update Type
	Action





	Device Twin Reported State Updated
	The controller patches the reported state of the device twin property in the cloud.




[image: ../../_images/device-upstream-controller.png]Device Upstream Controller


Syncing Reported Device Twin Property Update From Edge To Cloud

The mapper watches devices for updates and reports them to the event bus via the MQTT broker. The event bus sends the reported state of the device to the device twin which stores it locally and then syncs the updates to the cloud. The device controller watches for device updates from the edge ( via the cloudhub ) and updates the reported state in the cloud.

[image: ../../_images/device-updates-edge-cloud.png]Device Updates Edge To Cloud






Downstream Controller:

The downstream controller watches for device updates against the K8S API server. Updates are categorized below along with the possible actions that the downstream controller can take:




	Update Type
	Action





	New Device Model Created
	NA



	New Device Created
	The controller creates a new config map to store the device properties and visitors defined in the device model associated with the device.  This config map is stored in etcd. The existing config map sync mechanism in the edge controller is used to sync the config map to the edge. The mapper application running in a container can get the updated config map and use the property and visitor metadata to access the device. The device controller additionally reports the device twin metadata updates to the edge node.



	Device Node Membership Updated
	The device controller sends a membership update event to the edge node.



	Device  Twin Desired State Updated
	The device controller sends a twin update event to the edge node.



	Device Deleted
	The controller sends the device twin delete event to delete all device twins associated with the device. It also deletes config maps associated with the device and this delete event is synced to the edge. The mapper application effectively stops operating on the device.




[image: ../../_images/device-downstream-controller.png]Device Downstream Controller

The idea behind using config map to store device properties and visitors is that these metadata are only required by the mapper applications running on the edge node in order to connect to the device and collect data.
Mappers if run as containers can load these properties as config maps . Any additions , deletions or updates to properties , visitors etc in the cloud are watched upon by the downstream controller and config maps are updated in etcd.
If the mapper wants to discover what properties a device supports, it can get the model information from the device instance.
Also, it can get the protocol information to connect to the device from the device instance. Once it has access to the device model,
it can get the properties supported by the device. In order to access the property, the mapper needs to get the corresponding visitor information.
This can be retrieved from the propertyVisitors list. Finally, using the visitorConfig, the mapper can read/write the data associated with the property.


Syncing Desired Device Twin Property Update From Cloud To Edge

[image: ../../_images/device-updates-cloud-edge.png]Device Updates Cloud To Edge
The device controller watches device updates in the cloud and relays them to the edge node. These updates are stored locally by the device twin. The mapper gets these updates via the MQTT broker and operates on the device based on the updates.









          

      

      

    

  

    
      
          
            
  
Edged


Overview

EdgeD is an edge node module which manages pod lifecycle. It helps users to deploy containerized workloads or applications at the edge node. Those workloads could perform any operation from simple telemetry data manipulation to analytics or ML inference and so on. Using kubectl command line interface at the cloud side, users can issue commands to launch the workloads.

Several OCI-compliant runtimes are supported through the Container Runtime Interface (CRI). See KubeEdge runtime configuration for more information on how to configure edged to make use of other runtimes.

There are many modules which work in tandem to achieve edged’s functionalities.

[image: ../../_images/edged-overall.png]EdgeD Overall

Fig 1: EdgeD Functionalities




Pod Management

It is handles for pod addition, deletion and modification. It also tracks the health of the pods using pod status manager and pleg.
Its primary jobs are as follows:


	Receives and handles pod addition/deletion/modification messages from metamanager.


	Handles separate worker queues for pod addition and deletion.


	Handles worker routines to check worker queues to do pod operations.


	Keeps separate cache for config map and secrets respectively.


	Regular cleanup of orphaned pods




[image: ../../_images/pod-addition-flow.png]Pod Addition Flow

Fig 2: Pod Addition Flow

[image: ../../_images/pod-deletion-flow.png]Pod Deletion Flow

Fig 3: Pod Deletion Flow

[image: ../../_images/pod-update-flow.png]Pod Updation Flow

Fig 4: Pod Updation Flow




Pod Lifecycle Event Generator

This module helps in monitoring pod status for edged. Every second, using probes for liveness and readiness, it updates the information with pod status manager for every pod.

[image: ../../_images/pleg-flow.png]PLEG Design

Fig 5: PLEG at EdgeD




CRI for edged

Container Runtime Interface (CRI) – a plugin interface which enables edged to use a wide variety of container runtimes like Docker, containerd, CRI-O, etc., without the need to recompile. For more on how to configure KubeEdge for container runtimes, see KubeEdge runtime configuration.


Why CRI for edged?

CRI support for multiple container runtimes in edged is needed in order to:


	Support light-weight container runtimes on resource-constrained edge nodes which are unable to run the existing Docker runtime.


	Support multiple container runtimes like Docker, containerd, CRI-O, etc., on edge nodes.




Support for corresponding CNI with pause container and IP will be considered later.

[image: ../../_images/edged-cri.png]CRI Design

Fig 6: CRI at EdgeD






Secret Management

In edged, Secrets are handled separately. For operations like addition, deletion and modification, there are separate sets of config messages and interfaces.
Using these interfaces, secrets are updated in cache store.
The flow diagram below explains the message flow.

[image: ../../_images/secret-handling.png]Secret Message Handling

Fig 7: Secret Message Handling at EdgeD

Edged uses the MetaClient module to fetch secrets from MetaManager. If edged queries for a new secret which is not yet stored in MetaManager, the request is forwarded to the Cloud. Before sending the response containing the secret, MetaManager stores it in a local database. Subsequent queries for the same secret key will be retrieved from the database, reducing latency. The flow diagram below shows how a secret is fetched from MetaManager and the Cloud. It also describes how the secret is stored in MetaManager.

[image: ../../_images/query-secret-from-edged.png]Query Secret

Fig 8: Query Secret by EdgeD




Probe Management

Probe management creates two probes for readiness and liveness respectively for pods to monitor the containers. The readiness probe helps by monitoring when the pod has reached a running state. The liveness probe helps by monitoring the health of pods, indicating if they are up or down.
As explained earlier, the PLEG module uses its services.




ConfigMap Management

In edged, ConfigMaps are also handled separately. For operations like addition, deletion and modification, there are separate sets of config messages and interfaces.
Using these interfaces, ConfigMaps are updated in cache store.
The flow diagram below explains the message flow.

[image: ../../_images/configmap-handling.png]ConfigMap Message Handling

Fig 9: ConfigMap Message Handling at EdgeD

Edged uses the MetaClient module to fetch ConfigMaps from MetaManager. If edged queries for a new ConfigMap which is not yet stored in MetaManager, the request is forwarded to the Cloud. Before sending the response containing the ConfigMap, MetaManager stores it in a local database. Subsequent queries for the same ConfigMap key will be retrieved from the database, reducing latency. The flow diagram below shows how ConfigMaps are fetched from MetaManager and the Cloud. It also describes how ConfigMaps are stored in MetaManager.

[image: ../../_images/query-configmap-from-edged.png]Query Configmaps

Fig 10: Query Configmaps by EdgeD




Container GC

The container garbage collector is an edged routine which wakes up every minute, collecting and removing dead containers using the specified container gc policy.
The policy for garbage collecting containers is determined by three variables, which can be user-defined:


	MinAge is the minimum age at which a container can be garbage collected, zero for no limit.


	MaxPerPodContainer is the maximum number of dead containers that any single pod (UID, container name) pair is allowed to have, less than zero for no limit.


	MaxContainers is the maximum number of total dead containers, less than zero for no limit. Generally, the oldest containers are removed first.







Image GC

The image garbage collector is an edged routine which wakes up every 5 secs, and collects information about disk usage based on the policy used.
The policy for garbage collecting images takes two factors into consideration, HighThresholdPercent and LowThresholdPercent. Disk usage above the high threshold will trigger garbage collection, which attempts to delete unused images until the low threshold is met. Least recently used images are deleted first.




Status Manager

Status manager is an independent edge routine, which collects pods statuses every 10 seconds and forwards this information to the cloud using the metaclient interface.

[image: ../../_images/pod-status-manger-flow.png]Status Manager Flow

Fig 11: Status Manager Flow




Volume Management

Volume manager runs as an edge routine which brings out the information of which volume(s) are to be attached/mounted/unmounted/detached based on pods scheduled on the edge node.

Before starting the pod, all the specified volumes referenced in pod specs are attached and mounted, Till then the flow is blocked and with its other operations.




MetaClient

Metaclient is an interface of Metamanger for edged. It helps edged to get ConfigMaps and secret details from metamanager or cloud.
It also sends sync messages, node status and pod status towards metamanger to cloud.







          

      

      

    

  

    
      
          
            
  
EventBus


Overview

Eventbus acts as an interface for sending/receiving messages on mqtt topics.

It supports 3 kinds of mode:


	internalMqttMode


	externalMqttMode


	bothMqttMode







Topic

eventbus subscribes to the following topics:

- $hw/events/upload/#
- SYS/dis/upload_records
- SYS/dis/upload_records/+
- $hw/event/node/+/membership/get
- $hw/event/node/+/membership/get/+
- $hw/events/device/+/state/update
- $hw/events/device/+/state/update/+
- $hw/event/device/+/twin/+





Note: topic wildcards




	wildcard
	Description





	#
	It must be the last character in the topic, and matches the current tree and all subtrees.



	+
	It matches exactly one item in the topic tree.







Flow chart


1. eventbus sends messages from external client

[image: ../../_images/eventbus-handleMsgFromClient.jpg]eventbus sends messages from external client




2. eventbus sends response messages to external client

[image: ../../_images/eventbus-handleResMsgToClient.jpg]eventbus sends response messages to external client

The flow is almost the same in internal mode except the eventbus is as message broker itself.









          

      

      

    

  

    
      
          
            
  
MetaManager


Overview

MetaManager is the message processor between edged and edgehub.
It’s also responsible for storing/retrieving metadata to/from a lightweight database(SQLite).

Metamanager receives different types of messages based on the operations listed below :


	Insert


	Update


	Delete


	Query


	Response


	NodeConnection


	MetaSync







Insert Operation

Insert operation messages are received via the cloud when new objects are created.
An example could be a new user application pod created/deployed through the cloud.

[image: ../../_images/meta-insert.png]Insert Operation

The insert operation request is received via the cloud by edgehub. It dispatches the
request to the metamanager which saves this message in the local database.
metamanager then sends an asynchronous message to edged. edged processes the insert request e,g.
by starting the pod and populates the response in the message.
metamanager inspects the message, extracts the response and sends it back to edged
which sends it back to the cloud.




Update Operation

Update operations can happen on objects at the cloud/edge.

The update message flow is similar to an insert operation. Additionally, metamanager checks if the resource being updated has changed locally.
If there is a delta, only then the update is stored locally and the message is
passed to edged and response is sent back to the cloud.

[image: ../../_images/meta-update.png]Update Operation




Delete Operation

Delete operations are triggered when objects like pods are deleted from the
cloud.

[image: ../../_images/meta-delete.png]Delete Operation




Query Operation

Query operations let you query for metadata either locally at the edge or for some remote resources like config maps/secrets from the cloud. edged queries this
metadata from metamanager which further handles local/remote query processing and
returns the response back to edged. A Message resource can be broken into 3 parts
(resKey,resType,resId) based on separator ‘/’.

[image: ../../_images/meta-query.png]Query Operation




Response Operation

Responses are returned for any operations performed at the cloud/edge. Previous operations
showed the response flow either from the cloud or locally at the edge.




NodeConnection Operation

NodeConnection operation messages are received from edgeHub to give information about the cloud connection status. metamanager tracks this state in-memory and uses it in certain operations
like remote query to the cloud.




MetaSync Operation

MetaSync operation messages are periodically sent by metamanager to sync the status of the
pods running on the edge node. The sync interval is configurable in conf/edge.yaml
( defaults to 60 seconds ).

meta:
    sync:
        podstatus:
            interval: 60 #seconds











          

      

      

    

  

    
      
          
            
  
EdgeHub


Overview

Edge hub is responsible for interacting with CloudHub component present in the cloud. It can connect to the CloudHub using either a web-socket connection or using QUIC [https://quicwg.org/ops-drafts/draft-ietf-quic-applicability.html] protocol.
It supports functions like sync cloud side resources update, report edged side host and device status changes.

It acts as the communication link between the edge and the cloud.
It forwards the messages received from the cloud to the corresponding module at the edge and vice-versa.

The main functions performed by edgehub are :-


	Keep Alive


	Publish Client Info


	Route to Cloud


	Route to Edge







Keep Alive

A keep-alive message or heartbeat is sent to cloudHub after every heartbeatPeriod.




Publish Client Info


	The main responsibility of publishing client info is to inform the other groups or modules regarding the status of connection to the cloud.


	It sends a beehive [https://github.com/kubeedge/beehive] message to all groups (namely metaGroup, twinGroup and busGroup), informing them whether cloud is connected or disconnected.







Route To Cloud

The main responsibility of route to cloud is to receive from the other modules (through beehive framework), all the
messages that are to be sent to the cloud, and send them to cloudHub through the websocket connection.

The major steps involved in this process are as follows :-


	Continuously receive messages from beehive Context


	Send that message to cloudHub


	If the message received is a sync message then :

3.1 If response is received on syncChannel then it creates a map[string] chan containing the messageID of the message as key

3.2 It waits for one heartbeat period to receive a response on the channel created, if it does not receive any response on the channel within the specified time then it times out.

3.3 The response received on the channel is sent back to the module using the SendResponse() function.





[image: ../../_images/route-to-cloud.png]Route to Cloud




Route To Edge

The main responsibility of route to edge is to receive messages from the cloud (through the websocket connection) and
send them to the required groups through the beehive [https://github.com/kubeedge/beehive] framework.

The major steps involved in this process are as follows :-


	Receive message from cloudHub


	Check whether the route group of the message is found.


	Check if it is a response to a SendSync() function.


	If it is not a response message then the message is sent to the required group


	If it is a response message then the message is sent to the syncKeep channel




[image: ../../_images/route-to-edge.png]Route to Edge




Usage

EdgeHub can be configured to communicate in two ways as mentioned below:


	Through websocket protocol: Click here for details.


	Through QUIC protocol: Click here for details.










          

      

      

    

  

    
      
          
            
  
DeviceTwin


Overview

DeviceTwin module is responsible for storing device status, dealing with device attributes, handling device twin operations, creating a membership
between the edge device and edge node, syncing device status to the cloud and syncing the device twin information between edge and cloud.
It also provides query interfaces for applications. Device twin consists of four sub modules (namely membership module, communication
module, device module and device twin module) to perform the responsibilities of device twin module.




Operations Performed By Device Twin Controller

The following are the functions performed by device twin controller :-


	Sync metadata to/from db ( Sqlite )


	Register and Start Sub Modules


	Distribute message to Sub Modules


	Health Check





Sync Metadata to/from db ( Sqlite )

For all devices managed by the edge node , the device twin performs the below operations :-


	It checks if the device in the device twin context (the list of devices are stored inside the device twin context), if not it adds a mutex to the context.


	Query device from database


	Query device attribute from database


	Query device twin from database


	Combine the device, device attribute and device twin data together into a single structure and stores it in the device twin context.







Register and Start Sub Modules

Registers the four device twin modules and starts them as separate go routines




Distribute Message To Sub Modules


	Continuously listen for any device twin message in the beehive framework.


	Send the received message to the communication module of device twin


	Classify the message according to the message source, i.e. whether the message is from eventBus, edgeManager or edgeHub,
and fills the action module map of the module (ActionModuleMap is a map of action to module)


	Send the message to the required device twin module







Health Check

The device twin controller periodically ( every 60 s ) sends ping messages to submodules. Each of the submodules updates the timestamp in a map for itself once it receives a ping.
The controller checks if the timestamp for a module is more than 2 minutes old and restarts the submodule if true.






Modules

DeviceTwin consists of four modules, namely :-


	Membership Module


	Twin Module


	Communication Module


	Device Module





Membership Module

The main responsibility of the membership module is to provide membership to the new devices added through the cloud to the edge node.
This module binds the newly added devices to the edge node and creates a membership between the edge node and the edge devices.

The major functions performed by this module are:-


	Initialize action callback map which is a map[string]Callback that contains the callback functions that can be performed


	Receive the messages sent to membership module


	For each message the action message is read and the corresponding function is called


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the membership module :-


	dealMembershipGet


	dealMembershipUpdated


	dealMembershipDetail




dealMembershipGet:    dealMembershipGet()  gets the information  about the devices associated with the particular edge node, from the cache.


	The eventbus first receives a message on its subscribed topic (membership-get topic).


	This message arrives at the  devicetwin controller, which further sends the message to membership module.


	The membership module gets the devices associated with the edge node from the cache (context) and sends the information to the communication module.
It also handles errors that may arise while performing the  aforementioned process and sends the error to the communication module instead of device details.


	The communication module sends the information to the  eventbus component which further publishes the result on the
specified MQTT topic (get membership result topic).

[image: ../../_images/membership-get.png]Membership Get()





dealMembershipUpdated:  dealMembershipUpdated() updates the membership details of the node.
It adds the devices, that were newly added, to the edge group and removes the devices, that were removed,
from the edge group and updates device details, if they have been altered or updated.


	The edgehub module receives the membership update message from the cloud and forwards the message
to devicetwin controller which further forwards it to the membership module.


	The membership  module adds devices that are newly added, removes devices that have been recently
deleted and also updates the devices that were already existing in the database as well as in the cache.


	After updating the details of the devices a  message is sent to the communication module of the device twin, which sends the message to eventbus module to be published on the given MQTT topic.

[image: ../../_images/membership-update.png]Membership Update





dealMembershipDetail:   dealMembershipDetail() provides the membership details of the edge node, providing information
about the devices associated with the edge node, after removing the membership details of
recently removed devices.


	The eventbus module receives the message that arrives on the subscribed topic,the message is then forwarded  to the
devicetwin controller which further forwards it to the membership module.


	The membership  module adds devices that are mentioned in the message, removes
devices that are not present in the cache.


	After updating the details of the devices a  message is sent to the communication module of the device twin.

[image: ../../_images/membership-detail.png]Membership Detail








Twin Module

The main responsibility of the twin module is to deal with all the device twin related operations. It can perform
operations like device twin update, device twin get and device twin sync-to-cloud.

The major functions performed by this module are:-


	Initialize action callback map (which is a  map of action(string) to the callback function that performs the requested action)


	Receive the messages sent to twin module


	For each message the action message is read and the corresponding function is called


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the twin module :-


	dealTwinUpdate


	dealTwinGet


	dealTwinSync




dealTwinUpdate: dealTwinUpdate() updates the device twin information for a particular device.


	The devicetwin update message can either be received by edgehub module from the cloud or from
the MQTT broker through the eventbus component (mapper will publish a message on the device twin update topic) .


	The message is then sent to the device twin controller from where it is sent to the device twin module.


	The twin module updates the twin value in the database and sends the update result message to the communication module.


	The communication module will in turn send the publish message to the MQTT broker through the eventbus.

[image: ../../_images/devicetwin-update.png]Device Twin Update





dealTwinGet: dealTwinGet() provides the device twin  information for a particular device.


	The eventbus component  receives the message that arrives on the subscribed twin get topic and forwards the message to devicetwin controller, which further sends the message to twin module.


	The twin module gets the devicetwin related information for the particular device and sends it to the communication module, it also handles errors that arise when the device is not found or if any internal problem occurs.


	The communication module sends the information to the eventbus component, which publishes the result on the topic specified .

[image: ../../_images/devicetwin-get.png]Device Twin Get





dealTwinSync: dealTwinSync() syncs the device twin information to the cloud.


	The eventbus module receives the message on the subscribed twin cloud sync topic .


	This message is then sent to the devicetwin controller from where it is sent to the twin module.


	The twin module then syncs the twin information present in the database and sends the synced twin results to the communication module.


	The communication module further sends the information to edgehub component which will in turn send the updates to the cloud through the websocket connection.


	This function also performs operations like publishing the updated twin details  document, delta of the device twin as well as the update result (in case there is some error) to a specified topic through the communication module,
which sends the data to edgehub, which will send it to eventbus which publishes on the MQTT broker.




[image: ../../_images/sync-to-cloud.png]Sync to Cloud




Communication Module

The main responsibility of communication module is to ensure the communication functionality between device twin  and the other components.

The major functions performed by this module are:-


	Initialize action callback map which is a map[string]Callback that contains the callback functions that can be performed


	Receive the messages sent to communication module


	For each message the action message is read and the corresponding function is called


	Confirm whether the actions specified in the message are completed or not, if the action is not completed then redo the action


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the communication module :-


	dealSendToCloud


	dealSendToEdge


	dealLifeCycle


	dealConfirm




dealSendToCloud: dealSendToCloud() is used to send data to the cloudHub component.
This function first ensures that the cloud is connected, then sends the message to the edgeHub module (through the beehive framework),
which in turn will forward the message to the cloud (through the websocket connection).

dealSendToEdge:  dealSendToEdge() is used to send data to the other modules present at the edge.
This function sends the message received to the edgeHub module using beehive framework.
The edgeHub module after receiving the message will send it to the required recipient.

dealLifeCycle:   dealLifeCycle() checks if the cloud is connected and the state of the twin is disconnected, it then changes the status
to connected and sends the node details to edgehub. If the cloud is disconnected then, it sets the state of the twin
as disconnected.

dealConfirm:     dealConfirm() is used to confirm the event. It checks whether the type of the message is right and
then deletes the id from the confirm map.




Device Module

The main responsibility of the device module is to perform the device related operations like dealing with device state updates
and device attribute updates.

The major functions performed by this module are :-


	Initialize action callback map (which is a  map of action(string) to the callback function that performs the requested action)


	Receive the messages sent to device module


	For each message the action message is read and the corresponding function is called


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the device module :-


	dealDeviceUpdated


	dealDeviceStateUpdate




dealDeviceUpdated: dealDeviceUpdated() deals with the operations to be performed when a device attribute update is encountered.
It updates the changes to the device attributes, like addition of attributes, updation of attributes and deletion of attributes
in the database. It also sends the result of the device attribute update to be published to the eventbus component.


	The device attribute updation is initiated from the cloud, which sends the update to edgehub.


	The edgehub component sends the message to the device twin controller which forwards the message to the device module.


	The device module updates the device attribute details into the database after which, the device module sends the result of the device attribute update to be published
to the eventbus component through the communicate module of devicetwin. The eventbus component further publishes the result on the specified topic.




[image: ../../_images/device-update.png]Device Update

dealDeviceStateUpdate:  dealDeviceStateUpdate() deals with the operations to be performed when a device status update is encountered.
It updates the state of the device as well as the last online time of the device in the database.
It also sends the update state result, through the communication module,  to the cloud through the edgehub module and to the  eventbus module which in turn
publishes the result on the specified topic of the MQTT broker.


	The device state updation is initiated by publishing a message on the specified topic which is being subscribed by the eventbus component.


	The eventbus component sends the message to the device twin controller which forwards the message to the device module.


	The device module updates the state of the device as well as the last online time of the device in the database.


	The device module then sends the result of the device state update to the eventbus component and edgehub component through the communicate module of devicetwin. The eventbus component further publishes the result on the specified topic, while the
edgehub component sends the device status update to the cloud.

[image: ../../_images/device-state-update.png]Device State Update










Tables

DeviceTwin module creates three tables in the database, namely :-


	Device Table


	Device Attribute Table


	Device Twin Table





Device Table

Device table contains the data regarding the devices added to a particular edge node.
The following are the columns present in the device table :




	Column Name
	Description





	ID
	This field indicates the id assigned to the device



	Name
	This field indicates the name of the device



	Description
	This field indicates the description of the device



	State
	This field indicates the state of the device



	LastOnline
	This fields indicates when the device was last online




Operations Performed :-

The following are the operations that can be performed on this data :-


	Save Device: Inserts a device in the device table


	Delete Device By ID: Deletes a device by its ID from the device table


	Update Device Field: Updates a single field in the device table


	Update Device Fields: Updates multiple fields in the device table


	Query Device: Queries a device from the device table


	Query Device All: Displays all the devices present in the device table


	Update Device Multi: Updates multiple columns of multiple devices in the device table


	Add Device Trans: Inserts device, device attribute and device twin in a single transaction, if any of these operations fail,
then it rolls back the other insertions


	Delete Device Trans: Deletes device, device attribute and device twin in a single transaction, if any of these operations fail,
then it rolls back the other deletions







Device Attribute Table

Device attribute table contains the data regarding the device attributes associated with a particular device in the edge node.
The following are the columns present in the device attribute table :




	Column Name
	Description





	ID
	This field indicates the id assigned to the device attribute



	DeviceID
	This field indicates the device id of the device associated with this attribute



	Name
	This field indicates the name of the device attribute



	Description
	This field indicates the description of the device attribute



	Value
	This field indicates the value of the device attribute



	Optional
	This fields indicates whether the device attribute is optional or not



	AttrType
	This fields indicates the type of attribute that is referred to



	Metadata
	This fields describes the metadata associated with the device attribute




Operations Performed :-

The following are the operations that can be performed on this data :


	Save Device Attr: Inserts a device attribute in the device attribute table


	Delete Device Attr By ID: Deletes a device attribute by its ID from the device attribute table


	Delete Device Attr: Deletes a device attribute from the device attribute table by filtering based on device id and device name


	Update Device Attr Field: Updates a single field in the device attribute table


	Update Device Attr Fields: Updates multiple fields in the device attribute table


	Query Device Attr: Queries a device attribute from the device attribute table


	Update Device Attr Multi: Updates multiple columns of multiple device attributes in the device attribute table


	Delete Device Attr Trans: Inserts device attributes, deletes device attributes and updates device attributes in a single transaction.







Device Twin Table

Device twin table contains the data related to the device device twin associated with a particular device in the edge node.
The following are the columns present in the device twin table :




	Column Name
	Description





	ID
	This field indicates the id assigned to the device twin



	DeviceID
	This field indicates the device id of the device associated with this device twin



	Name
	This field indicates the name of the device twin



	Description
	This field indicates the description of the device twin



	Expected
	This field indicates the expected value of the device



	Actual
	This field indicates the actual value of the device



	ExpectedMeta
	This field indicates the metadata associated with the expected value of the device



	ActualMeta
	This field indicates the metadata associated with the actual value of the device



	ExpectedVersion
	This field indicates the version of the expected value of the device



	ActualVersion
	This field indicates the version of the actual value of the device



	Optional
	This fields indicates whether the device twin is optional or not



	AttrType
	This fields indicates the type of attribute that is referred to



	Metadata
	This fields describes the metadata associated with the device twin




Operations Performed :-

The following are the operations that can be performed on this data :-


	Save Device Twin: Inserts a device twin in the device twin table


	Delete Device Twin By Device ID: Deletes a device twin by its ID from the device twin table


	Delete Device Twin: Deletes a device twin from the device twin table by filtering based on device id and device name


	Update Device Twin Field: Updates a single field in the device twin table


	Update Device Twin Fields: Updates multiple fields in the device twin table


	Query Device Twin: Queries a device twin from the device twin table


	Update Device Twin Multi: Updates multiple columns of multiple device twins in the device twin table


	Delete Device Twin Trans: Inserts device twins, deletes device twins and updates device twins in a single transaction.












          

      

      

    

  

    
      
          
            
  
EdgeSite: Standalone Cluster at edge


Abstract

In Edge computing, there are scenarios where customers would like to have a whole cluster installed at edge location. As a result,
admins/users can leverage the local control plane to implement management functionalities and take advantages of all edge computing’s benefits.

EdgeSite helps running lightweight clusters at edge.




Motivation

There are scenarios users need to run a standalone Kubernetes cluster at edge to get full control and improve the offline scheduling capability. There are two scenarios users need to do that:


	The edge cluster is in CDN instead of the user’s site

The CDN sites usually be large around the world and the network connectivity and quality cannot be guaranteed. Another factor is that the application deployed in CDN edge do not need to interact with center usually. For those deploy edge cluster in CDN resources, they need to make sure the cluster is workable without the connection with central cloud not only for the deployed applications but also the schedule capabilities. So that the CDN edge is manageable regardless the connection to one center.



	Users need to deploy an edge environment with limited resources and offline running for most of the time

In some IOT scenarios, users need to deploy a full control edge environment and running offline.





For these use cases, a standalone, full controlled, light weight Edge cluster is required.
By integrating KubeEdge and standard Kubernetes, this EdgeSite enables customers to run an efficient kubernetes cluster for Edge/IOT computing.




Assumptions

Here we assume a cluster is deployed at edge location including the management control plane.
For the management control plane to manage some scale of edge worker nodes, the hosting master node needs to have sufficient resources.

The assumptions are


	EdgeSite cluster master node is of no less than 2 CPUs and no less than 1GB memory


	If high availability is required, 2-3 master nodes are needed at different edge locations


	The same Kubernetes security (authN and authZ) mechanisms are used to ensure the secure handshake between master and worker nodes


	The same K8s HA mechanism is to be used to enable HA







Architecture Design

[image: ../_images/EdgeSite_arch.PNG]EdgeSite Architecture




Advantages

With the integration, the following can be enabled


	Full control of Kubernetes cluster at edge


	Light weight control plane and agent


	Edge worker node autonomy in case of network disconnection/reconnection


	All benefits of edge computing including latency, data locality, etc.







Getting Started


Setup

[image: ../_images/EdgeSite_Setup.PNG]EdgeSite Setup




Steps for K8S (API server) Cluster


	Install docker [https://docs.docker.com/install/]


	Install kubeadm/kubectl [https://kubernetes.io/docs/setup/independent/install-kubeadm/]


	Creating cluster with kubeadm [https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/]


	KubeEdge supports https connection to Kubernetes apiserver.

Enter the path to kubeconfig file in controller.yaml

controller:
  kube:
    ...
    kubeconfig: "path_to_kubeconfig_file" #Enter path to kubeconfig file to enable https connection to k8s apiserver







	(Optional) KubeEdge also supports insecure http connection to Kubernetes apiserver for testing, debugging cases.
Please follow below steps to enable http port in Kubernetes apiserver.

vi /etc/kubernetes/manifests/kube-apiserver.yaml
# Add the following flags in spec: containers: -command section
- --insecure-port=8080
- --insecure-bind-address=0.0.0.0





Enter the master address in controller.yaml

controller:
  kube:
    ...
    master: "http://127.0.0.1:8080" #Note if master and kubeconfig are both set, master will override any value in kubeconfig.












Steps for EdgeSite


Getting EdgeSite Binary


Using Source code


	Clone KubeEdge (EdgeSite) code

git clone https://github.com/kubeedge/kubeedge.git $GOPATH/src/github.com/kubeedge/kubeedge







	Build EdgeSite

cd $GOPATH/src/github.com/kubeedge/kubeedge
make all WHAT=edgesite












Download Release packages

Click here [https://github.com/kubeedge/kubeedge/releases] and download.






Configuring EdgeSite

Generate edgesite config by edgesite --minconfig and update:


	Configure K8S (API Server)

Replace localhost at controller.kube.master with the IP address

controller:
  kube:
    master: http://localhost:8080
    ...







	Add EdgeSite (Worker) Node ID/name

Replace edge-node with an unique edge id/name in below fields :


	controller.kube.node-id


	controller.edged.hostname-override




controller:
  kube:
    ...
    node-id: edge-node
    node-name: edge-node
    ...
  edged:
    ...
    hostname-override: edge-node
    ...







	Configure MQTT (Optional)

The Edge part of KubeEdge uses MQTT for communication between deviceTwin and devices. KubeEdge supports 3 MQTT modes:


	internalMqttMode: internal mqtt broker is enabled. (Default)


	bothMqttMode: internal as well as external broker are enabled.


	externalMqttMode: only external broker is enabled.




Use mode field in edgesite.yaml to select the desired mode.

mqtt:
  ...
  mode: 0 # 0: internal mqtt broker enable only. 1: internal and external mqtt broker enable. 2: external mqtt broker enable only.
  ...





To use KubeEdge in double mqtt or external mode, you need to make sure that mosquitto [https://mosquitto.org/] or emqx edge [https://www.emqx.io/downloads/edge] is installed on the edge node as an MQTT Broker.








Run EdgeSite

  # run edgesite
  # `conf/` should be in the same directory as the cloned KubeEdge repository
  # verify the configurations before running edgesite
  ./edgesite
  # or
  nohup ./edgesite --config /path/to/edgesite/config > edgesite.log 2>&1 &





Note: Please run edgesite using the users who have root permission.






Deploy EdgeSite (Worker) Node to K8S Cluster

We have provided a sample node.json to add a node in kubernetes. Please make sure edgesite (worker) node is added to k8s api-server.
Run below steps:


	Modify node.json

Replace edge-node in node.json file, to the id/name of the edgesite node. ID/Name should be same as used before while updating edgesite.yaml

  {
    "metadata": {
      "name": "edge-node",
    }
  }







	Add node in K8S API server

In the console execute the below command

  kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/node.json







	Check node status

Below command to check the edgesite node status.

  kubectl get nodes

  NAME         STATUS     ROLES    AGE     VERSION
  testing123   Ready      <none>   6s      0.3.0-beta.0





Observe the edgesite node is in Ready state








Deploy Application

Try out a sample application deployment by following below steps.

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/deployment.yaml





Note: Currently, for edgesite node, we must use hostPort in the Pod container spec so that the pod comes up normally, or the pod will be always in ContainerCreating status. The hostPort must be equal to containerPort and can not be 0.

Then you can use below command to check if the application is normally running.

  kubectl get pods













          

      

      

    

  

    
      
          
            
  
Bluetooth Mapper


Introduction

Mapper is an application that is used to connect and control devices. This is an implementation of mapper for
bluetooth protocol. The aim is to create an application through which users can easily operate devices using bluetooth protocol for communication to the KubeEdge platform. The user is required to provide the mapper with the information required to control their device through the configuration file. These can be changed at runtime by providing the input through the MQTT broker.




Running the mapper


	Please ensure that bluetooth service of your device is ON


	Set ‘bluetooth=true’ label for the node (This label is a prerequisite for the scheduler to schedule bluetooth_mapper pod on the node)

kubectl label nodes <name-of-node> bluetooth=true







	Build and deploy the mapper by following the steps given below.





Building the bluetooth mapper

cd $GOPATH/src/github.com/kubeedge/kubeedge/mappers/bluetooth_mapper
make bluetooth_mapper_image
docker tag bluetooth_mapper:v1.0 <your_dockerhub_username>/bluetooth_mapper:v1.0
docker push <your_dockerhub_username>/bluetooth_mapper:v1.0

Note: Before trying to push the docker image to the remote repository please ensure that you have signed into docker from your node, if not please type the following command to sign in
docker login
# Please enter your username and password when prompted








Deploying bluetooth mapper application

cd $GOPATH/src/github.com/kubeedge/kubeedge/mappers/bluetooth_mapper

# Please enter the following details in the deployment.yaml :-
#    1. Replace <edge_node_name> with the name of your edge node at spec.template.spec.voluems.configMap.name
#    2. Replace <your_dockerhub_username> with your dockerhub username at spec.template.spec.containers.image

kubectl create -f deployment.yaml










Modules

The bluetooth mapper consists of the following five major modules :-


	Action Manager


	Scheduler


	Watcher


	Controller


	Data Converter





Action Manager

A bluetooth device can be controlled by setting a specific value in physical register(s) of a device and readings can be acquired by
getting the value from specific register(s). We can define an Action as a group of read/write operations on a device. A device may support
multiple such actions. The registers are identified by characteristic values which are exposed by the device through entities called characteristic-uuids.
Each of these actions should be supplied through config-file to action manager or at runtime through MQTT. The values specified initially through the configuration
file can be modified at runtime through MQTT. Given below is a guide to provide input to action manager through the configuration file.

action-manager:
   actions:          # Multiple actions can be added
     - name: <name of the action>
       perform-immediately: <true/false>
       device-property-name: <property-name defined in the device model>
     - .......
       .......






	Multiple actions can be added in the action manager module. Each of these actions can either be executed by the action manager of invoked by other modules of
the mapper like scheduler and watcher.


	Name of each action should be unique, it is using this name that the other modules like the scheduler or watcher can invoke which action to perform.


	Perform-immediately field of the action manager tells the action manager whether it is supposed to perform the action immediately or not, if it set to true then the action manager will
perform the event once.


	Each action is associated with a device-property-name, which is the property-name defined in the device CRD, which in turn contains the implementation details required by the action.







Scheduler

Scheduler is a component which can perform an action or a set of actions at regular intervals of time. They will make use of the actions previously defined in the action manager module,
it has to be ensured that before the execution of the schedule the action should be defined, otherwise it would lead to an error. The schedule can be configured to run for a specified number of times
or run infinitely. The scheduler is an optional module and need not be specified if not required by the user. The user can provide input to the scheduler through configuration file or
through MQTT at runtime. The values specified initially by the user through the configuration file can be modified at runtime through MQTT. Given below is a guide to provide input to scheduler
through the configuration file.

      scheduler:
        schedules:
          - name: <name of schedule>
            interval: <time in milliseconds>
            occurrence-limit: <number of times to be executed>            # if it is 0, then the event will execute infinitely
            actions:
              - <action name>
              - <action name>
          - ......
            ......






	Multiple schedules can be defined by the user by providing an array as input through the configuration file.


	Name specifies the name of the schedule to be executed, each schedule must have a unique name as it is used as a method of identification by the scheduler.


	Interval refers to the time interval at which the schedule is meant to be repeated. The user is expected to provide the input in milliseconds.


	Occurrence-limit refers to the number of times the action(s) is supposed to occur. If the user wants the event to run infinitely then it can be set to 0 or the field can be skipped.


	Actions refer to the action names which are supposed to be executed in the schedule. The actions will be defined in the same order in which they are mentioned here.


	The user is expected to provide the names of the actions to be performed in the schedule, in the same order that they are to be executed.







Watcher

The following are the main responsibilities of the watcher component:
a) To scan for bluetooth devices and connect to the correct device once it is Online/In-Range.

b) Keep a watch on the expected state of the twin-attributes of the device and perform the action(s) to make actual state equal to expected.

c) To report the actual state of twin attributes back to the cloud.

The watcher is an optional component and need not be defined or used by the user if not necessary. The input to the watcher can be provided through the configuration file or through
mqtt at runtime. The values that are defined through the configuration file can be changed at runtime through MQTT. Given below is a guide to provide input to the watcher through the configuration file.

      watcher:
          device-twin-attributes :
          - device-property-name: <name of attribute>
              - <action name>
              - <action name>
          - ......
            ......






	Device-property-name refers to the device twin attribute name that was given when creating the device. It is using this name that the watcher watches for any change in expected state.


	Actions refers to a list of action names, these are the names of the actions using which we can convert the actual state to the expected state.


	The names of the actions being provided must have been defined using the action manager before the mapper begins execution. Also the action names should be mentioned in the same order in which they have
to be executed.







Controller

The controller module is responsible for exposing MQTT APIs to perform CRUD operations on the watcher, scheduler and action manager. The controller is also responsible for starting the other modules like action manager, watcher and scheduler.
The controller first connects the MQTT client to the broker (using the mqtt configurations, specified in the configuration file), it then initiates the watcher which will connect to the device (based on the configurations provided in the configuration file) and the
watcher runs parallelly, after this it starts the action manager which executes all the actions that have been enabled in it, after which the scheduler is started to run parallelly as well. Given below is a guide to provide input to the
controller through the configuration file.

      mqtt:
        mode: 0       # 0 -internal mqtt broker  1 - external mqtt broker
        server: tcp://127.0.0.1:1883 # external mqtt broker url.
        internal-server: tcp://127.0.0.1:1884 # internal mqtt broker url.
      device-model-name: <device_model_name>










Usage


Configuration File

The user can give the configurations specific to the bluetooth device using configurations provided in the configuration file present at $GOPATH/src/github.com/kubeedge/kubeedge/mappers/bluetooth_mapper/configuration/config.yaml.
The details provided in the configuration file are used by action-manager module, scheduler module, watcher module, the data-converter module and the controller.

Example: Given below is the instructions using which user can create their own configuration file, for their device.

     mqtt:
       mode: 0       # 0 -internal mqtt broker  1 - external mqtt broker
       server: tcp://127.0.0.1:1883 # external mqtt broker url.
       internal-server: tcp://127.0.0.1:1884 # internal mqtt broker url.
     device-model-name: <device_model_name>        #deviceID received while registering device with the cloud
     action-manager:
       actions:          # Multiple actions can be added
       - name: <name of the action>
         perform-immediately: <true/false>
         device-property-name: <property-name defined in the device model>
       - .......
         .......
     scheduler:
       schedules:
       - name: <name of schedule>
         interval: <time in milliseconds>
         occurrence-limit: <number of times to be executed>            # if it is 0, then the event will execute infinitely
         actions:
         - <action name>
         - <action name>
         - ......
       - ......
     watcher:
       device-twin-attributes :
       - device-property-name: <name of attribute>
         actions:        # Multiple actions can be added
         - <action name>
         - <action name>
         - ......
       - ......








Runtime Configuration Modifications

The configuration of the mapper as well as triggering of the modules of the mapper can be done during runtime. The user can do this by
publishing messages on the respective MQTT topics of each module. Please note that we have to use the same MQTT broker that is being used by the mapper
i.e. if the mapper is using the internal MQTT broker then the messages have to be published on the internal MQTT broker
and if the mapper is using the external MQTT broker then the messages have to be published on the external MQTT broker.

The following properties can be changed at runtime by publishing messages on MQTT topics of the MQTT broker:


	Watcher


	Action Manager


	Scheduler





Watcher

The user can add or update the watcher properties of the mapper at runtime. It will overwrite the existing watcher configurations (if exists)

Topic: $ke/mappers/bluetooth-mapper/< deviceID >/watcher/create

Message:

         {
          "device-twin-attributes": [
            {
              "device-property-name": "IOControl",
              "actions": [                     # List of names of actions to be performed (actions should have been defined before watching)
                "IOConfigurationInitialize",
                "IODataInitialize",
                "IOConfiguration",
                "IOData"
              ]
            }
          ]
        }








Action Manager

In the action manager module the user can perform two types of operations at runtime, i.e. :
1. The user can add or update the actions to be performed on the bluetooth device.
2. The user can delete the actions that were previously defined for the bluetooth device.


Action Add

The user can add a set of actions to be performed by the mapper. If an action with the same name as one of the actions in the list exists
then it updates the action and if the action does not already exist then it is added to the existing set of actions.

Topic: $ke/mappers/bluetooth-mapper/< deviceID >/action-manager/create

Message:

    [
      {
        "name": "IRTemperatureConfiguration",          # name of action
        "perform-immediately": true,                   # whether the action is to performed immediately or not
        "device-property-name": "temperature-enable"   #property-name defined in the device model
      },
      {
        "name": "IRTemperatureData",
        "perform-immediately": true,
        "device-property-name": "temperature"          #property-name defined in the device model
      }
    ]








Action Delete

The users can delete a set of actions that were previously defined for the device. If the action mentioned in the list does not exist
then it returns an error message.

Topic: $ke/mappers/bluetooth-mapper/< deviceID >/action-manager/delete

Message:

    [
      {
        "name": "IRTemperatureConfiguration"        #name of action to be deleted
      },
      {
        "name": "IRTemperatureData"
      },
      {
        "name": "IOConfigurationInitialize"
      },
      {
        "name": "IOConfiguration"
      }
    ]










Scheduler

In the scheduler module the user can perform two types of operations at runtime, i.e. :
1. The user can add or update the schedules to be performed on the bluetooth device.
2. The user can delete the schedules that were previously defined for the bluetooth device.


Schedule Add

The user can add a set of schedules to be performed by the mapper. If a schedule with the same name as one of the schedules in the list exists
then it updates the schedule and if the action does not already exist then it is added to the existing set of schedules.

Topic: $ke/mappers/bluetooth-mapper/< deviceID >/scheduler/create

Message:

[
  {
    "name": "temperature",            # name of schedule
    "interval": 3000,           # frequency of the actions to be executed (in milliseconds)
    "occurrence-limit": 25,         # Maximum number of times the event is to be executed, if not given then it runs infinitely
    "actions": [                          # List of names of actions to be performed (actions should have been defined before execution of schedule)
      "IRTemperatureConfiguration",
      "IRTemperatureData"
    ]
  }
]








Schedule Delete

The users can delete a set of schedules that were previously defined for the device. If the schedule mentioned in the list does not exist
then it returns an error message.

Topic: $ke/mappers/bluetooth-mapper/< deviceID >/scheduler/delete

Message:

    [
      {
        "name": "temperature"                  #name of schedule to be deleted
      }
    ]

















          

      

      

    

  

    
      
          
            
  
Modbus Mapper


Introduction

Mapper is an application that is used to connect and control devices. This is an implementation of mapper for
Modbus protocol. The aim is to create an application through which users can easily operate devices using ModbusTCP/ModbusRTU protocol for communication to the KubeEdge platform. The user is required to provide the mapper with the information required to control their device through the dpl configuration file. These can be changed at runtime by updating configmap.




Running the mapper


	Please ensure that Modbus device is connected to your edge node


	Set ‘modbus=true’ label for the node (This label is a prerequisite for the scheduler to schedule modbus_mapper pod on the node)

kubectl label nodes <name-of-node> modbus=true







	Build and deploy the mapper by following the steps given below.





Building the modbus mapper

cd $GOPATH/src/github.com/kubeedge/kubeedge/mappers/modbus_mapper
make # or `make modbus_mapper`
docker tag modbus_mapper:v1.0 <your_dockerhub_username>/modbus_mapper:v1.0
docker push <your_dockerhub_username>/modbus_mapper:v1.0

Note: Before trying to push the docker image to the remote repository please ensure that you have signed into docker from your node, if not please type the following command to sign in
docker login
# Please enter your username and password when prompted








Deploying modbus mapper application

cd $GOPATH/src/github.com/kubeedge/kubeedge/mappers/modbus_mapper

# Please enter the following details in the deployment.yaml :-
#    1. Replace <edge_node_name> with the name of your edge node at spec.template.spec.voluems.configMap.name
#    2. Replace <your_dockerhub_username> with your dockerhub username at spec.template.spec.containers.image

kubectl create -f deployment.yaml










Modules

The modbus mapper consists of the following four major modules :-


	Controller


	Modbus Manager


	Devicetwin Manager


	File Watcher





Controller

The main entry is index.js. The controller module is responsible for subscribing edge MQTT devicetwin topic and perform check/modify operation on connected modbus devices. The controller is also responsible for loading the configuration and starting the other modules. The controller first connects the MQTT client to the broker to receive message of expected devicetwin value (using the mqtt configurations in conf.json), it then connects to the devices and check all the properties of devices every 2 seconds (based on dpl configuration provided in the configuration file) and the file watcher runs parallelly to check whether the dpl configuration file is changed.




Modbus Manager

Modbus Manager is a component which can perform a read or write action on modbus device. The following are the main responsibilities of this component:
a) When controller receives message of expected devicetwin value, Modbus Manager will connect to the device and change the registers to make actual state equal to expected.

b) When controller checks all the properties of devices, Modbus Manager will connect to the device and read the actual value in registers according to the dpl configuration.




Devicetwin Manager

Devicetwin Manager is a component which can transfer the edge devicetwin message. The following are the main responsibilities of this component:
a) To receive the edge devicetwin message from edge mqtt broker and parse message.

b) To report the actual value of device properties in devicetwin format to the cloud.




File Watcher

File Watcher is a component which can load dpl and mqtt configuration from configuration files.The following are the main responsibilities of this component:
a) To monitor the dpl configuration file. If this file changed, file watcher will reload the dpl configuration to the mapper.

b) To load dpl and mqtt configuration when mapper starts first time.









          

      

      

    

  

    
      
          
            
  
Contributing


Code of Conduct

Please make sure to read and observe our Code of Conduct [https://github.com/kubeedge/community/blob/master/CODE_OF_CONDUCT].




Community Expectations

KubeEdge is a community project driven by its community which strives to promote a healthy, friendly and productive environment.
The goal of the community is to develop a cloud native edge computing platform built on top of Kubernetes to manage edge nodes and devices at scale and demonstrate resiliency, reliability in offline scenarios. To build a platform at such scale requires the support of a community with similar aspirations.


	See Community Membership for a list of various community roles. With gradual contributions, one can move up in the chain.







Preparation


	Choose matched golang [https://golang.org/dl] version and install:







	
	Golang 1.11
	Golang 1.12
	Golang 1.13
	Golang 1.14





	KubeEdge 1.2
	✗
	✓
	✓
	✓



	KubeEdge 1.3
	✗
	✓
	✓
	✓



	KubeEdge 1.4
	✗
	✗
	✗
	✓



	KubeEdge HEAD (master)
	✗
	✗
	✗
	✓





	Fork the repository on GitHub


	Download the repository


	Read this for more details










          

      

      

    

  

    
      
          
            
  
Governance

The governance model adopted here is heavily influenced by a set of CNCF projects, especially drawing reference from Kubernetes governance [https://github.com/kubernetes/community/blob/master/governance].
For similar structures some of the same wordings from kubernetes governance are borrowed to adhere
to the originally construed meaning.


Principles


	Open: KubeEdge is open source community.


	Welcoming and respectful: See Code of Conduct [https://github.com/cncf/foundation/blob/master/code-of-conduct].


	Transparent and accessible: Work and collaboration should be done in public.
Changes to the KubeEdge organization, KubeEdge code repositories, and CNCF related activities (e.g.
level, involvement, etc) are done in public.


	Merit: Ideas and contributions are accepted according to their technical merit
and alignment with project objectives, scope and design principles.







Code of Conduct

KubeEdge follows the CNCF Code of Conduct [https://github.com/cncf/foundation/blob/master/code-of-conduct].
Here is an excerpt:


As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.







Community Membership

See community membership [https://github.com/kubeedge/community/blob/master/community-membership]




Community Groups


Special Interest Groups (SIGs)

The KubeEdge project is organized primarily into Special Interest Groups, or
SIGs. Each SIG is comprised of individuals from multiple companies and
organizations, with a common purpose of advancing the project with respect to a
specific topic.

The goal is to enable a distributed decision structure and code ownership,
as well as providing focused forums for getting work done, making decisions,
and on-boarding new Contributors. Every identifiable part of the project
(e.g. repository, subdirectory, API, test, issue, PR) is intended to be
owned by some SIG.


SIG Chairs

SIGs must have at least one, and may have up to two SIG chairs at any given
time. SIG chairs are intended to be organizers and facilitators, responsible for
the operation of the SIG and for communication and coordination with the other
SIGs, and the broader community.




SIG Charter

Each SIG must have a charter that specifies its scope (topics, sub-systems,
code repos and directories), responsibilities, and areas of authority, how members
and roles of authority/leadership are selected/granted, how decisions are made,
and how conflicts are resolved.

SIGs should be relatively free to customize or
change how they operate, within some broad guidelines and constraints imposed by
cross-SIG processes (e.g., the release process) and assets (e.g., the kubeedge repo).

A primary reason that SIGs exist is as forums for collaboration. Much work in a
SIG should stay local within that SIG. However, SIGs must communicate in the
open, ensure other SIGs and community members can find meeting notes,
discussions, designs, and decisions, and periodically communicate a high-level
summary of the SIG’s work to the community. SIGs are also responsible to:


	Meet regularly, at least monthly


	Keep up-to-date meeting notes, linked from the SIG’s page in the community repo


	Announce meeting agenda and minutes after each meeting, on the KubeEdge mailing
list and/or slack or other channel.


	Ensure the SIG’s decision making is archived somewhere public


	Report activity in overall community meetings


	Participate in release planning meetings, retrospective, etc (if relevant)


	Actively triage issues, PRs, test failures, etc. related to code and tests owned by the SIG


	Use the above forums as the primary means of working, communicating, and collaborating, as opposed
to private emails and meetings.











CLA

All contributors must sign the CNCF CLA, as described here [https://github.com/kubernetes/community/blob/master/CLA].




Credits

Sections of this documents have been borrowed from Kubernetes governance [https://github.com/kubernetes/community/blob/master/governance].







          

      

      

    

  

    
      
          
            
  
KubeEdge Community Membership

Note : This document keeps changing based on the status and feedback of KubeEdge Community.

This document gives a brief overview of the KubeEdge community roles with the requirements and responsibilities associated with them.




	Role
	Requirements
	Responsibilities
	Privileges





	Member
	Sponsor from 2 approvers, active in community, contributed to KubeEdge
	Welcome and guide new contributors
	KubeEdge GitHub organization Member



	Approver
	Sponsor from 2 maintainers, has good experience and knowledge of domain, actively contributed to code and review
	Review and approve contributions from community members
	Write access to specific packagies in relevant repository



	Maintainer
	Sponsor from 2 owners, shown good technical judgement in feature design/development and PR review
	Participate in release planning and feature development/maintenance
	Top level write access to relevant repository. Name entry in Maintainers file of the repository



	Owner
	Sponsor from 3 owners, helps drive the overall KubeEdge project
	Drive the overall technical roadmap of the project and set priorities of activities in release planning
	KubeEdge GitHub organization Admin access




Note : It is mandatory for all KubeEdge community members to follow KubeEdge Code of Conduct.


Member

Members are active participants in the community who contribute by authoring PRs,
reviewing issues/PRs or participate in community discussions on slack/mailing list.


Requirements


	Sponsor from 2 approvers


	Enabled two-factor authentication [https://help.github.com/articles/about-two-factor-authentication] on their GitHub account


	Actively contributed to the community. Contributions may include, but are not limited to:


	Authoring PRs


	Reviewing issues/PRs authored by other community members


	Participating in community discussions on slack/mailing list


	Participate in KubeEdge community meetings











Responsibilities and privileges


	Member of the KubeEdge GitHub organization


	Can be assigned to issues and PRs and community members can also request their review


	Participate in assigned issues and PRs


	Welcome new contributors


	Guide new contributors to relevant docs/files


	Help/Motivate new members in contributing to KubeEdge









Approver

Approvers are active members who have good experience and knowledge of the domain.
They have actively participated in the issue/PR reviews and have identified relevant issues during review.


Requirements


	Sponsor from 2 maintainers


	Member for at least 2 months


	Have reviewed good number of PRs


	Have good codebase knowledge







Responsibilities and Privileges


	Review code to maintain/improve code quality


	Acknowledge and work on review requests from community members


	May approve code contributions for acceptance related to relevant expertise


	Have ‘write access’ to specific packages inside a repo, enforced via bot


	Continue to contribute and guide other community members to contribute in KubeEdge project









Maintainer

Maintainers are approvers who have shown good technical judgement in feature design/development in the past.
Has overall knowledge of the project and features in the project.


Requirements


	Sponsor from 2 owners


	Approver for at least 2 months


	Nominated by a project owner


	Good technical judgement in feature design/development







Responsibilities and privileges


	Participate in release planning


	Maintain project code quality


	Ensure API compatibility with forward/backward versions based on feature graduation criteria


	Analyze and propose new features/enhancements in KubeEdge project


	Demonstrate sound technical judgement


	Mentor contributors and approvers


	Have top level write access to relevant repository (able click Merge PR button when manual check-in is necessary)


	Name entry in Maintainers file of the repository


	Participate & Drive design/development of multiple features









Owner

Owners are maintainers who have helped drive the overall project direction.
Has deep understanding of KubeEdge and related domain and facilitates major agreement in release planning


Requirements


	Sponsor from 3 owners


	Maintainer for at least 2 months


	Nominated by a project owner


	Not opposed by any project owner


	Helped in driving the overall project







Responsibilities and Privileges


	Make technical decisions for the overall project


	Drive the overall technical roadmap of the project


	Set priorities of activities in release planning


	Guide and mentor all other community members


	Ensure all community members are following Code of Conduct


	Although given admin access to all repositories, make sure all PRs are properly reviewed and merged


	May get admin access to relevant repository based on requirement


	Participate & Drive design/development of multiple features




Note : These roles are applicable only for KubeEdge github organization and repositories. Currently KubeEdge doesn’t have a formal process for review and acceptance into these roles. We will come-up with a process soon.









          

      

      

    

  

    
      
          
            
  
Feature Lifecycle

This document is to clarify definitions and differences between features and corresponding APIs
during different development stages (versions).

Each version has different level of stability, support time,
and requires different graduation criteria moving to next level:


	Alpha


	Beta


	GA





Alpha

The feature may be changed/upgraded in incompatible ways in the later versions.

The source code will be available in the release branch/tag as well as in the binaries.

Support for the feature can be stopped any time without notice.

The feature may have bugs.

The feature may also induce bugs in other APIs/Features if enabled.

The feature may not be completely implemented.

The API version names will be like v1alpha1, v1alpha2, etc. The suffixed number will be incremented by 1 in each upgrade.


Graduation Criteria


	Each feature will start at alpha level.


	Should not break the functioning of other APIs/Features.









Beta

The feature may not be changed/upgraded in incompatible ways in later versions,
but if changed in incompatible ways then upgrade strategy will be provided.

The source code will be available in the release branch/tag as well as in the binaries.

Support for the feature will not be stopped without 2 minor releases notice and will be present in at least next 2 minor releases.

The feature will have very less bugs.

The feature will not induce bugs in other APIs/Features if enabled.

The feature will be completely implemented.

The API version names will be like v1beta1, v1beta2, etc. The suffixed number will be incremented by 1 in each upgrade.


Graduation Criteria


	Should have at least 50% coverage in e2e tests.


	Project agrees to support this feature for at least next 2 minor releases and notice of at least 2 minor releases will be given before stopping the support.


	Feature Owner should commit to ensure backward/forward compatibility in the later versions.









GA

The feature will not be changed/upgraded in incompatible ways in the next couple of versions.

The source code will be available in the release branch/tag as well as in the binaries.

Support for the feature will not be stopped without 4 minor releases notice and will be present in at least next 4 minor releases.

The feature will not have major bugs as it will be tested completely as well as have e2e tests.

The feature will not induce bugs in other APIs/Features if enabled.

The feature will be completely implemented.

The API version names will be like v1, v2, etc.


Graduation Criteria


	Should have complete e2e tests.


	Code is thoroughly tested and is reported to be very stable.


	Project will support this feature for at least next 4 minor releases and notice of at least 4 minor releases will be given before stopping support.


	Feature Owner should commit to ensure backward/forward compatibility in the later versions.


	Consensus from KubeEdge Maintainers as well as Feature/API Owners who use/interact with the Feature/API.












          

      

      

    

  

    
      
          
            
  
Device Management User Guide

KubeEdge supports device management with the help of Kubernetes CRDs [https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions] and a Device Mapper (explained below) corresponding to the device being used.
We currently manage devices from the cloud and synchronize the device updates between edge nodes and cloud, with the help of device controller and device twin modules.


Notice

Device Management features are updated from v1alpha1 to v1alpha2 in release v1.4.
It is not compatible for v1alpha1 and v1alpha2.
Details can be found device-management-enhance




Device Model

A device model describes the device properties such as ‘temperature’ or ‘pressure’. A device model is like a reusable template using which many devices can be created and managed.

Details on device model definition can be found here.


Device Model Sample

A sample device model like below,

apiVersion: devices.kubeedge.io/v1alpha2
kind: DeviceModel
metadata:
 name: sensor-tag-model
 namespace: default
spec:
 properties:
  - name: temperature
    description: temperature in degree celsius
    type:
     int:
      accessMode: ReadWrite
      maximum: 100
      unit: degree celsius
  - name: temperature-enable
    description: enable data collection of temperature sensor
    type:
      string:
        accessMode: ReadWrite
        defaultValue: 'OFF'










Device Instance

A device instance represents an actual device object. It is like an instantiation of the device model and references properties defined in the model which exposed by property visitors to access. The device spec is static while the device status contains dynamically changing data like the desired state of a device property and the state reported by the device.

Details on device instance definition can be found here.


Device Instance Sample

A sample device instance like below,

apiVersion: devices.kubeedge.io/v1alpha2
kind: Device
metadata:
  name: sensor-tag-instance-01
  labels:
    description: TISimplelinkSensorTag
    manufacturer: TexasInstruments
    model: CC2650
spec:
  deviceModelRef:
    name: sensor-tag-model
  protocol:
    modbus:
      slaveID: 1
    common:
      com:
        serialPort: '1'
        baudRate: 115200
        dataBits: 8
        parity: even
        stopBits: 1
  nodeSelector:
    nodeSelectorTerms:
    - matchExpressions:
      - key: ''
        operator: In
        values:
        - node1
  propertyVisitors:
    - propertyName: temperature
      modbus:
        register: CoilRegister
        offset: 2
        limit: 1
        scale: 1
        isSwap: true
        isRegisterSwap: true
    - propertyName: temperature-enable
      modbus:
        register: DiscreteInputRegister
        offset: 3
        limit: 1
        scale: 1.0
        isSwap: true
        isRegisterSwap: true
status:
  twins:
    - propertyName: temperature
      reported:
        metadata:
          timestamp: '1550049403598'
          type: int
        value: '10'
      desired:
        metadata:
          timestamp: '1550049403598'
          type: int
        value: '15'








Customized Protocols and Customized Settings

From KubeEdge v1.4, we can support customized protocols and customized settings, samples like below


	customized protocols




  propertyVisitors:
    - propertyName: temperature
      collectCycle: 500000000
      reportCycle: 1000000000
      customizedProtocol:
        protocolName: MY-TEST-PROTOCOL
        configData:
          def1: def1-val
          def2: def2-val
          def3:
            innerDef1: idef-val






	customized values




  protocol:
    common:
      ...
      customizedValues:
        def1: def1-val
        def2: def2-val








Data Topic

From KubeEdge v1.4, we add data section defined in device spec.
Data section describe a list of time-series properties which will be reported by mappers to edge MQTT broker and should be processed in edge.

apiVersion: devices.kubeedge.io/v1alpha1
kind: Device
metadata:
    ...
spec:
  deviceModelRef:
    ...
  protocol:
    ...
  nodeSelector:
    ...
  propertyVisitors:
    ...
  data:
    dataTopic: "$ke/events/device/+/data/update"
    dataProperties:
      - propertyName: pressure
        metadata:
          type: int
      - propertyName: temperature
        metadata:
          type: int










Device Mapper

Mapper is an application that is used to connect and and control devices. Following are the responsibilities of mapper:


	Scan and connect to the device.


	Report the actual state of twin-attributes of device.


	Map the expected state of device-twin to actual state of device-twin.


	Collect telemetry data from device.


	Convert readings from device to format accepted by KubeEdge.


	Schedule actions on the device.


	Check health of the device.




Mapper can be specific to a protocol where standards are defined i.e Bluetooth, Zigbee, etc or specific to a device if it a custom protocol.

Mapper design details can be found here

An example of a mapper application created to support bluetooth protocol can be found here [https://github.com/kubeedge/kubeedge/tree/master/mappers/bluetooth_mapper#bluetooth-mapper]




Usage of Device CRD

The following are the steps to


	Create a device model in the cloud node.

        kubectl apply -f <path to device model yaml>







	Create a device instance in the cloud node.

       kubectl apply -f <path to device instance yaml>





Note: Creation of device instance will also lead to the creation of a config map which will contain information about the devices which are required by the mapper applications
The name of the config map will be as follows: device-profile-config-< edge node name >. The updates of the config map is handled internally by the device controller.



	Run the mapper application corresponding to your protocol.


	Edit the status section of the device instance yaml created in step 2 and apply the yaml to change the state of device twin. This change will be reflected at the edge, through the device controller
and device twin modules. Based on the updated value of device twin at the edge the mapper will be able to perform its operation on the device.


	The reported values of the device twin are updated by the mapper application at the edge and this data is synced back to the cloud by the device controller. User can view the update at the cloud by checking his device instance object.




    Note: Sample device model and device instance for a few protocols can be found at $GOPATH/src/github.com/kubeedge/kubeedge/build/crd-samples/devices











          

      

      

    

  

    
      
          
            
  
MQTT Message Topics

KubeEdge uses MQTT for communication between deviceTwin and devices/apps.
EventBus can be started in multiple MQTT modes and acts as an interface for sending/receiving messages on relevant MQTT topics.

The purpose of this document is to describe the topics which KubeEdge uses for communication.
Please read Beehive documentation for understanding about message format used by KubeEdge.


Subscribe Topics

On starting EventBus, it subscribes to these 5 topics:

1. "$hw/events/node/+/membership/get"
2. "$hw/events/device/+/state/update"
3. "$hw/events/device/+/twin/+"
4. "$hw/events/upload/#"
5. "SYS/dis/upload_records"
6. "$ke/events/+/device/data/update"





If the the message is received on first 3 topics, the message is sent to deviceTwin, else the message is sent to cloud via edgeHub.

We will focus on the message expected on the first 3 topics.


	"$hw/events/node/+/membership/get":
This topics is used to get membership details of a node i.e the devices that are associated with the node.
The response of the message is published on "$hw/events/node/+/membership/get/result" topic.


	"$hw/events/device/+/state/update":
This topic is used to update the state of the device. + symbol can be replaced with ID of the device whose state is to be updated.


	"$hw/events/device/+/twin/+":
The two + symbols can be replaced by the deviceID on whose twin the operation is to be performed and any one of(update,cloud_updated,get) respectively.


	"$ke/events/device/+/data/update"
This topic is add in KubeEdge v1.4, and used for delivering time-serial data. This topic is not processed by edgecore, instead, they
should be processed by third-party component on edge node such as EMQ Kuiper.




The content of data topic should conform to following format

{
	"event_id": "123e4567-e89b-12d3-a456-426655440000",
	"timestamp": 1597213444,
	"data": {
		"propertyName1": {
			"value": "123",
			"metadata": {
				"timestamp": 1597213444, //+optional
				"type": "int"
			}
		},
		"propertyName2": {
			"value": "456",
			"metadata": {
				"timestamp": 1597213444,
				"type": "int"
			}
		}
	}
}





Following is the explanation of the three suffix used:


	update: this suffix is used to update the twin for the deviceID.


	cloud_updated: this suffix is used to sync the twin status between edge and cloud.


	get: is used to get twin status of a device. The response is published on "$hw/events/device/+/twin/get/result" topic.










          

      

      

    

  

    
      
          
            
  
Unit Test Guide

The purpose of this document is to give introduction about unit tests and to help contributors in writing unit tests.


Unit Test

Read this article [http://softwaretestingfundamentals.com/unit-testing/] for a simple introduction about unit tests and benefits of unit testing. Go has its own built-in package called testing and command called go test.
For more detailed information on golang’s builtin testing package read this document [https://golang.org/pkg/testing/].




Mocks

The object which needs to be tested may have dependencies on other objects. To confine the behavior of the object under test, replacement of the other objects by mocks that simulate the behavior of the real objects is necessary.
Read this article [https://medium.com/@piraveenaparalogarajah/what-is-mocking-in-testing-d4b0f2dbe20a] for more information on mocks.

GoMock is a mocking framework for Go programming language.
Read godoc [https://godoc.org/github.com/golang/mock/gomock] for more information about gomock.

Mock for an interface can be automatically generated using GoMocks [https://github.com/golang/mock] mockgen package.

Note There is gomock package in kubeedge vendor directory without mockgen. Please use mockgen package of tagged version v1.1.1 of GoMocks github repository [https://github.com/golang/mock] to install mockgen and generate mocks. Using higher version may cause errors/panics during execution of you tests.

There is gomock package in kubeedge vendor directory without mockgen. Please use mockgen package of tagged version v1.1.1 of GoMocks github repository [https://github.com/golang/mock] to install mockgen and generate mocks. Using higher version may cause errors/panics during execution of you tests.

Read this article [https://blog.codecentric.de/en/2017/08/gomock-tutorial/] for a short tutorial of usage of gomock and mockgen.




Ginkgo

Ginkgo [https://onsi.github.io/ginkgo/] is one of the most popular framework for writing tests in go.

Read godoc [https://godoc.org/github.com/onsi/ginkgo] for more information about ginkgo.

See a sample in kubeedge where go builtin package testing and gomock is used for writing unit tests.

See a sample in kubeedge where ginkgo is used for testing.




Writing UT using GoMock


Example : metamanager/dao/meta.go

After reading the code of meta.go, we can find that there are 3 interfaces of beego which are used. They are Ormer, QuerySeter and RawSeter.

We need to create fake implementations of these interfaces so that we do not rely on the original implementation of this interface and their function calls.

Following are the steps for creating fake/mock implementation of Ormer, initializing it and replacing the original with fake.


	Create directory mocks/beego.


	use mockgen to generate fake implementation of the Ormer interface




mockgen -destination=mocks/beego/fake_ormer.go -package=beego github.com/astaxie/beego/orm Ormer






	destination : where you want to create the fake implementation.


	package : package of the created fake implementation file


	github.com/astaxie/beego/orm : the package where interface definition is there


	Ormer : generate mocks for this interface





	Initialize mocks in your test file. eg meta_test.go




mockCtrl := gomock.NewController(t)
defer mockCtrl.Finish()
ormerMock = beego.NewMockOrmer(mockCtrl)






	ormermock is now a fake implementation of Ormer interface. We can make any function in ormermock return any value you want.


	replace the real Ormer implementation with this fake implementation. DBAccess is variable to type Ormer which we will replace with mock implemention




dbm.DBAccess = ormerMock






	If we want Insert function of ormer interface which has return types as (int64,err) to return (1 nil), it can be done in 1 line in your test file using gomock.




ormerMock.EXPECT().Insert(gomock.Any()).Return(int64(1), nil).Times(1)





Expect() : is to tell that a function of ormermock will be called.

Insert(gomock.Any()) : expect Insert to be called with any parameter.

Return(int64(1), nil) : return 1 and error nil

Times(1): expect insert to be called once and return 1 and nil only once.

So whenever insert is called, it will return 1 and nil, thus removing the dependency on external implementation.









          

      

      

    

  

    
      
          
            
  
Bluetooth Mapper End to End Test Setup Guide

The test setup required for running the end to end test of bluetooth mapper requires two separate machines in bluetooth range.
The paypal/gatt package used for bluetooth mapper makes use of hci interface for bluetooth communication. Out of two machines specified,
one is used for running bluetooth mapper and other is used for running a test server which publishes data that the mapper use for processing.
The test server created here is also using the paypal/gatt package.


Steps for running E2E tests


	Turn ON bluetooth service of both machines


	Run server on first machine. Follow steps given below for running the test server.


	For running mapper tests on second machine, clone kubbedge code and follow steps 4,5 and 6.


	Update “dockerhubusername” and “dockerhubpassword” in tests/e2e/scripts/fast_test.sh with your credentials.


	Compile bluetooth mapper e2e by executing the following command in $GOPATH/src/github.com/kubeedge/kubeedge.
bash -x tests/e2e/scripts/compile.sh bluetooth


	Run bluetooth mapper e2e by executing the following command in $GOPATH/src/github.com/kubeedge/kubeedge.
bash -x tests/e2e/scripts/execute.sh bluetooth





Test Server Creation


	Copy devices folder in tests/e2e/stubs and keep it in path TESTSERVER/src/github.com in first machine.


	Update the following in devices/mockserver.go


	package devices -> package main


	import “github.com/kubeedge/kubeedge/tests/stubs/devices/services” to “github.com/devices/services”






	Build the binary using
go build mockserver.go


	Run the server using
sudo ./mockserver -logtostderr -duration=<specify duration for which test server should be running>




sudo is required for getting hci control of the machine.

This runs your test server which publishes data for the mapper to process.









          

      

      

    

  

    
      
          
            
  
EdgeMesh guide

In case network issue between cloud and edge side, we intergrate EdgeMesh to support DNS visit at any time.

Currently we only support HTTP1.x, more protocols like HTTPS and gRPC coming later.

EdgeMesh is enabled as default.


Limitation


	Ensure network interface “docker0” exists, which means that EdgeMesh only works for Docker CRI.







Environment Check

Before run examples, please check environment first.


DNS Order

Modify /etc/nsswitch.conf, make sure dns is first order, like below:

$ grep hosts /etc/nsswitch.conf
hosts:          dns file mdns4_minimal [NOTFOUND=return]








IP Forward Setting

Enable ip forward:

$ sudo echo "net.ipv4.ip_forward = 1" >> /etc/sysctl.conf
$ sudo sysctl -p





Then check it:

$ sudo sysctl -p | grep ip_forward
net.ipv4.ip_forward = 1










Usage

Assume we have two edge nodes in ready state, we call them edge node “a” and “b”:

$ kubectl get nodes
NAME          STATUS     ROLES    AGE   VERSION
edge-node-a   Ready      edge     25m   v1.15.3-kubeedge-v1.1.0-beta.0.358+0b7ac7172442b5-dirty
edge-node-b   Ready      edge     25m   v1.15.3-kubeedge-v1.1.0-beta.0.358+0b7ac7172442b5-dirty
master        NotReady   master   8d    v1.15.0





Deploy a sample pod from Cloud Side:

$ kubectl apply -f https://raw.githubusercontent.com/kubeedge/kubeedge/master/build/deployment.yaml
deployment.apps/nginx-deployment created





Check the pod is up and is running state, as we could see the pod is running on edge node b:

$ kubectl get pods -o wide
NAME                                READY   STATUS    RESTARTS   AGE   IP           NODE          NOMINATED NODE   READINESS GATES
nginx-deployment-54bf9847f8-sxk94   1/1     Running   0          14m   172.17.0.2   edge-node-b   <none>           <none>





Check it works:

$ curl 172.17.0.2
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>





172.17.0.2 is the IP of deployment and the output may be different since the version of nginx image.

Then create a service for it:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
  name: nginx-svc
  namespace: default
spec:
  clusterIP: None
  selector:
    app: nginx
  ports:
    - name: http-0
      port: 12345
      protocol: TCP
      targetPort: 80
EOF







	For L4/L7 proxy, specify what protocol a port would use by the port’s “name”. First HTTP port should be named “http-0” and the second one should be called “http-1”, etc.







Check the service and endpoints:

$ kubectl get service
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)     AGE
nginx-svc    ClusterIP   None         <none>        12345/TCP   77m
$ kubectl get endpoints
NAME         ENDPOINTS            AGE
nginx-svc    172.17.0.2:80        81m





To request a server, use url like this: <service_name>.<service_namespace>.svc.<cluster>.<local>:<port>

In our case, from edge node a or b, run following command:

$ curl http://nginx-svc.default.svc.cluster.local:12345
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>







	EdgeMesh supports both Host Networking and Container Networking


	If you ever used EdgeMesh of old version, check your iptables rules. It might affect your test result.










Sample

[image: ../_images/edgemesh-test-env-example.png]sample




Model

[image: ../_images/model.jpg]model


	a headless service (a service with selector but ClusterIP is None)


	one or more pods’ labels match the headless service’s selector


	to request a server, use: <service_name>.<service_namespace>.svc.<cluster>:<port>:


	get the service’s name and namespace from domain name


	query all the backend pods from MetaManager by service’s namespace and name


	LoadBalance returns the real backend containers’ hostIP and hostPort











Flow

[image: ../_images/endtoend-test-flow.jpg]flow


	client requests to server by server’s domain name


	DNS being hijacked to EdgeMesh by iptables rules, then a fake ip returned


	request hijacked to EdgeMesh by iptables rules


	EdgeMesh resolves request, gets domain name, protocol, request and so on


	EdgeMesh load balances:


	get the service’s name and namespace from the domain name


	query backend pods of the service from MetaManager


	choose a backend based on strategy






	EdgeMesh transports request to server, wait for server’s response and then sends response back to client










          

      

      

    

  

    
      
          
            
  
Measuring memory footprint of EdgeCore


Why measure memory footprint?


	This platform is designed for a light-weight edge computing deployment, capable of running on devices with few resources (for example, 256MB RAM)


	It is important to know when deploying many pods that it showcases as little memory footprint as possible







KPI’s measured


	%CPU


	%Memory


	Resident Set Size (RSS)







How to test

After deployment and provisioning of KubeEdge cloud and edge components in 2 VM’s (supported and tested over Ubuntu 16.04) respectively, start deploying pods from 0 to 100 in steps of 5. Keep capturing above KPI’s using standard linux ps commands, after each step.


Test setup

[image: ../_images/perftestsetup_diagram.PNG]KubeEdge Test Setup

Fig 1: KubeEdge Test Setup




Creating a setup


Requirements


	Host machine’s or VM’s resource requirements can mirror the edge device of your choice


	Resources used for above setup are 4 CPU, 8GB RAM and 200 GB Disk space. OS is Ubuntu 16.04.


	Docker image used to deploy the pods in edge, needs to be created. The steps are:


	Go to github.com/kubeedge/kubeedge/edge/hack/memfootprint-test/


	Using the Dockerfile available here and create docker image (perftestimg:v1).


	Execute the docker command sudo docker build --tag "perftestimg:v1" ., to get the image.











Installation


	For KubeEdge Cloud and Edge:

Please follow steps mentioned in KubeEdge README.md



	For docker image:





	Deploy docker registry to either edge on any VM or host which is reachable to edge. Follow the steps mentioned here: https://docs.docker.com/registry/deploying/


	Create perftestimg:v1 docker image on the above mentioned host


	Then push this image to docker registry using docker tag and docker push commands (Refer: Same docker registry url mentioned above)
[Use this image’s metadata in pod deployment yaml]









Steps


	Check edge node is connected to cloud. In cloud console/terminal, execute the below command




root@ubuntu:~/edge/pod_yamls# kubectl get nodes
NAME                                   STATUS     ROLES    AGE     VERSION
192.168.20.31                          Unknown    <none>   11s
ubuntu                                 NotReady   master   5m22s   v1.14.0






	On cloud, modify deployment yaml (github.com/kubeedge/kubeedge/edge/hack/memfootprint-test/perftestimg.yaml), set the image name and set spec.replica as 5


	Execute sudo kubectl create -f ./perftestimg.yaml to deploy the first of 5 pods in edge node


	Execute sudo kubectl get pods | grep Running | wc to check if all the pods come to Running state. Once all pods come to running state, go to edge VM


	On Edge console, execute ps -aux | grep edgecore. The output shall be something like:




USER        PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root     102452  1.0  0.5 871704 42784 pts/0    Sl+  17:56   0:00 ./edgecore
root     102779  0.0  0.0  14224   936 pts/2    S+   17:56   0:00 grep --color=auto edge






	Collect %CPU, %MEM and RSS from respective columns and record


	Repeat step 2 and this time increase the replica by 5


	This time execute sudo kubectl apply -f <PATH>/perftestimg.yaml


	Repeat steps from 4 to 6.


	Now repeat steps from 7 to 9, till the replica count reaches 100












          

      

      

    

  

    
      
          
            
  
FAQs

This page contains a few commonly occurring questions.


keadm init failed to download release

If you have issue about connection to github, please follow below guide with proxy before do setup, take v1.4.0 as example:


	download release pkgs from release page [https://github.com/kubeedge/kubeedge/releases/tag/v1.4.0]


	download crds yamls matches the release version you downloaded, links as below:



	devices [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/devices/devices_v1alpha2_device.yaml]

	devices [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/devices/devices_v1alpha2_devicemodel.yaml]

	cluster [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/reliablesyncs/cluster_objectsync_v1alpha1.yaml]

	objectsync [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/reliablesyncs/objectsync_v1alpha1.yaml]







	put them under /etc/kubeedge as below:

$ tree -L 3
.
├── crds
│   ├── devices
│   │   ├── devices_v1alpha2_devicemodel.yaml
│   │   └── devices_v1alpha2_device.yaml
│   └── reliablesyncs
│       ├── cluster_objectsync_v1alpha1.yaml
│       └── objectsync_v1alpha1.yaml
└── kubeedge-v1.4.0-linux-amd64.tar.gz

3 directories, 5 files









Then you can do setup without any network issue, keadm would detect them and not download again(make sure you specify v1.4.0 with option --kubeedge-version 1.4.0).




Container keeps pending/ terminating


	Check the output of kubectl get nodes, whether the node is running healthy. Note that nodes in unreachable, offline status cannot complete graceful/soft pod deletion until they come back to normal.


	Check the output of kubectl describe pod <your-pod>, whether the pod is scheduled successfully.


	Check the edgecore logs for any errors.


	Check the architecture of the node running edgecore and make sure that container image you are trying to run is of the same architecture.
For example, if you are running edgecore on Raspberry Pi 4, which is of arm64v8 architecture, the nginx image to be executed would be arm64v8/nginx from the docker hub.


	Also, check that the podSandboxImage is correctly set as defined in Modification in edgecore.yaml.


	If all of the above is correctly set, login manually to your edge node and run your docker image manually by

 docker run <your-container-image>







	If the docker container image is not pulled from the docker hub, please check that there is enough space on the edge node.







Where do we find cloudcore/edgecore logs

This depends on the how cloudcore/ edgecore has been executed.


	If systemd was used to start the cloudcore/ edgecore? then use journalctl --unit <name of the service probably edgecore.service> to view the logs.


	If nohup was used to start the cloudcore/ edgecore, either a path would have been added where the log is located, Otherwise, if the log file wasn’t provided, the logs would be written to stdout.







Where do we find the pod logs

Connect to the edge node and then either


	use the log file located in /var/log/pods or


	use commands like docker logs <container id>




kubectl logs is not yet supported by KubeEdge.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  The documentation for the KubeEdge project resides at https://docs.kubeedge.io.



          

      

      

    

  

    
      
          
            
  
Roadmap

该文档描述了KubeEdge开发的路线图

在GitHub中定义的里程碑 [https://github.com/kubeedge/kubeedge/milestones]代表了最新的计划。

下面的路线图概述了KubeEdge将要添加的新功能。


2021 H1


核心框架


边缘List-Watch


	边缘端支持List-Watch接口，方便边缘组件接入。







云边自定义消息通道


	支持云端和边缘端之间的自定义消息传输







稳定支持CloudCore多活


	支持多个CloudCore实例同时稳定运行







第三方CNI集成支持


	提供flannel、calico等CNI插件的官方集成支持







第三方CSI集成支持


	提供Rook、OpenEBS等CSI插件的官方集成支持







支持云端管理边缘群集 (aka. EdgeSite)




在边缘端支持 ingress/网关






可维护性


部署优化


	更加简单、便捷的部署（最好一键部署，支持中国镜像）


	Admission Controller自动部署







边缘应用离线迁移时间自动化配置


	一键修改Default tolerationSeconds







体验良好的中文文档






IOT 设备管理


设备Mapper框架标准以及框架生成器


	制定边缘设备Mapper的实施标准







支持更多协议的mapper


	OPC-UA mapper


	ONVIF mapper









安全


完成安全漏洞扫描






测试


使用更多的度量和场景改进性能和e2e测试






边云协同AI


支持 KubeFlow/ONNX/Pytorch/Mindspore等




边云协同训练与推理






MEC


跨边云服务发现




5G网络能力开放








2021 H2


核心框架


云边自定义消息通道


	云边支持CloudEvent消息协议







数据面跨网络通信


	边缘-边缘 跨网络通信


	边缘-中心云 跨网络通信







使用标准的istio进行服务治理控制




云边协同监控


	支持prometheus push gateway


	数据管理，支持接收遥测数据和边缘分析。









IOT 设备管理


设备Mapper框架标准以及框架生成器


	开发Mapper基本框架生成器







支持更多协议的mapper


	GB/T 28181 mapper









边云协同AI


边缘智能benchmark






MEC


云网融合




service catalog




应用漫游











          

      

      

    

  

    
      
          
            
  
FAQs

本页展示了一些常见的问题。


keadm init 下载版本失败

如果您遇到了github的连接问题，请在安装前按照下面的代理指南进行操作，以v1.4.0为例：


	从发布页面 [https://github.com/kubeedge/kubeedge/releases/tag/v1.4.0]下载发布包


	下载与您下载的版本相匹配的crds yamls，链接如下：



	devices [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/devices/devices_v1alpha2_device.yaml]

	devices [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/devices/devices_v1alpha2_devicemodel.yaml]

	cluster [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/reliablesyncs/cluster_objectsync_v1alpha1.yaml]

	objectsync [https://raw.githubusercontent.com/kubeedge/kubeedge/v1.4.0/build/crds/reliablesyncs/objectsync_v1alpha1.yaml]







	把它们放在 /etc/kubeedge 下面：

$ tree -L 3
.
├── crds
│   ├── devices
│   │   ├── devices_v1alpha2_devicemodel.yaml
│   │   └── devices_v1alpha2_device.yaml
│   └── reliablesyncs
│       ├── cluster_objectsync_v1alpha1.yaml
│       └── objectsync_v1alpha1.yaml
└── kubeedge-v1.4.0-linux-amd64.tar.gz

3 directories, 5 files









然后你可以在没有任何网络问题的情况下进行安装，keadm 会检测到它们，并且不会再次下载(请确保您指定v1.4.0作为您的版本--kubeedge-version 1.4.0).




容器一直处于挂起/终止状态


	检查 kubectl get nodes 的输出，确认该节点是否运行正常。检查“kubectl get nodes”的输出，该节点是否运行正常。请注意，处于无法访问、脱机状态的节点在恢复正常之前无法完成非侵害式的pod删除操作的删除操作。


	检查 kubectl describe pod <your-pod>的输出，确认pod是否调度成功。


	检查 edgecore 日志是否有任何错误。


	检查运行 edgecore 的节点的体系结构，并确保尝试运行的容器映像具有相同的体系结构。

例如，如果您在体系结构为 arm64v8的 Raspberry Pi 4上运行 edgecore ，对应要执行的nginx镜像应该是docker hub镜像仓的 arm64v8/nginx 。



	另外，请检查 podSandboxImage 的设置是否按照Modification in edgecore.yaml进行正确的配置


	如果以上所有设置都正确，请手动登录到边缘节点，并通过手动运行docker映像

 docker run <your-container-image>







	如果docker容器镜像未从docker hub中拉取，请检查边缘节点上是否有足够的空间。







我们在哪里可以找到cloudcore/edgecore日志

这取决于cloudcore/edgecore的执行方式。


	如果使用 systemd 启动 cloudcore/edgecore，使用 journalctl --unit <name of the service probably edgecore.service> 查看日志。


	如果使用 nohup 启动 cloudcore/edgecore，会默认在日志所在的位置添加一个路径，如果没有提供日志文件，则会将日志写入stdout。







我们在哪里找到pod日志

连接到边缘节点，然后


	查看位于/var/log/pods 中的日志文件 或者


	使用如同 docker logs <container id> 的命令来操作










          

      

      

    

  

    
      
          
            
  
Build


Build through Make

You can build through make all after download the repository:

$ make all HELP=y
# Build code.
#
# Args:
#   WHAT: binary names to build. support: cloudcore admission edgecore edgesite keadm
#         the build will produce executable files under _output
#         If not specified, "everything" will be built.
#
# Example:
#   make
#   make all
#   make all HELP=y
#   make all WHAT=cloudcore











          

      

      

    

  

    
      
          
            
  
Build from source

If you want to build KubeEdge from source you would need a working installation of the Go 1.14+ toolchain [https://github.com/golang/tools] (GOPATH, PATH=${GOPATH}/bin:${PATH}).

Clone repo:

$ git clone https://github.com/kubeedge/kubeedge.git $GOPATH/src/github.com/kubeedge/kubeedge





Then go to KubeEdge git repo and build as following:

$ cd $GOPATH/src/github.com/kubeedge/kubeedge
$ make all WHAT=keadm





In most of the cases, when you are trying to compile KubeEdge edgecore on Raspberry Pi or any other device, you may run out of memory, in that case, it is advisable to cross-compile the Edgecore binary and transfer it to your edge device.


Cross build

If you want to build binaries for other arch different from your machine’s, for example, build keadm for arm32 on x86 machine:

# install gcc-arm-linux-gnueabi with your OS package manager
$ make crossbuild WHAT=keadm GOARM=GOARM7





for arm64:

# install gcc-aarch64-linux-gnu with your OS package manager
$ make crossbuild WHAT=keadm GOARM=GOARM8











          

      

      

    

  

    
      
          
            
  
Deploying KubeEdge with HuaweiCloud (IEF)


Intelligent EdgeFabric (IEF) [https://www.huaweicloud.com/product/ief.html]

Note: The HuaweiCloud IEF is only available in China now.


	Create an account in HuaweiCloud [https://www.huaweicloud.com].


	Go to IEF [https://www.huaweicloud.com/product/ief.html] and create an Edge node.


	Download the node configuration file (<node_name>.tar.gz).


	Run cd $GOPATH/src/github.com/kubeedge/kubeedge/edge to enter edge directory.


	Run bash -x hack/setup_for_IEF.sh /PATH/TO/<node_name>.tar.gz to modify the configuration files in conf/.










          

      

      

    

  

    
      
          
            
  
Deploy

We can deploy KubeEdge with following ways:








          

      

      

    

  

    
      
          
            
  
KubeEdge Pre-Check


Status Check

After the Cloud and Edge parts have started, you can use below command to check the edge node status.

On cloud host run,

kubectl get nodes





or

kubectl get nodes -l node-role.kubernetes.io/edge=





Please make sure the status of edge node you created is ready.




Deploy Application on cloud side

Try out a sample application deployment by following below steps.

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/deployment.yaml
deployment.apps/nginx-deployment created





Note: Currently, for applications running on edge nodes, we don’t support kubectl logs and kubectl exec commands(will support in future release), support pod to pod communication running on edge nodes in same subnet using edgemesh.

Then you can use below command to check if the application is normally running.

Check the pod is up and is running state

kubectl get pods
NAME                               READY   STATUS    RESTARTS   AGE
nginx-deployment-d86dfb797-scfzz   1/1     Running   0          44s





Check the deployment is up and is in running state

kubectl get deployments

NAME               READY   UP-TO-DATE   AVAILABLE   AGE
nginx-deployment   1/1     1            1           63s






Monitoring containers status

If the container runtime configured to manage containers is containerd , then the following commands can be used to inspect container status and list images.

sudo ctr --namespace k8s.io containers ls
sudo ctr --namespace k8s.io images ls
sudo crictl exec -ti <containerid> /bin/bash










Run Tests


Run Edge Unit Tests

make test





To run unit tests of a package individually.

cd <path to package to be tested>
go test -v








Run Edge Integration Tests

make integrationtest








Run E2E Tests

make e2e








Details and use cases of integration test framework

Please find the link [https://github.com/kubeedge/kubeedge/tree/master/edge/test/integration] to use cases of integration test framework for KubeEdge.









          

      

      

    

  _images/configmap-handling.png
Message Handle Configmap
And/nelete/upm

|——configmap message—pp! |
to edge node Post configmap |

,—add/dele1e/updme—>|
post

message to edged nfigmap

dd/delbte/update

message to edged | Add configmap extracted___|
from message content P

| |—insert configmap to cache.
|
|

|

! Update/Delete
|—— configmap extracted
from message content

Y

et configmap from cache
I_G gl

< Retum configmap data_ _|
from cache

| |
If Exists |

| updateoelete
1

configmap from cache ™






_images/device-crd-model.png
> kubectl get device
> kubectl get deviceModel

Custom Resources
(CRD)






_images/KubeEdge_logo.png
KubeEdge





_images/UpstreamController.png
CloudPart

REST Client

Update Pod/pod status
Query configmap/secret
Creates Stopimessage channel
Update Pod condition






_images/device-update.png
1. device atribute
update message

2.sendto
device twin

device module devicetwin controller edgehub

5.send device attribute
update result

6. send device atrbute.
update result to be published

communication modue eventbus

4.update device
atrbute detals

Device Update Operation





_images/device-updates-cloud-edge.png
Device) Kubernetes
Controller API )
/
2. Send updates
ity Kubsrmetes Servr Side
v
CloudHub

Cloud

v

3.5end device updates| Spuishesonopioto
< Device Twin |« EdgeHub ((am» P
4.records N
device updateg mosauliio’ o Subscribes o device

twin result topic and gets.
8. returs device twin Updates.

result 9. publishes device
twin on resulttopic

Eventbus

7.send message 10
getdevice twin

6. subscribe to topic for serving
device twin get requests






_images/device-downstream-controller.png
Kubect create/patchidelete
device, device model

]

 watch device model
updates
« walch device updates

Downstream)
create /delete config maps.

Kubernetes Server Side

 send device twin desiredireported
property updates.
« send node membership updates

v

CloudHub






_images/device-state-update.png
6. send the device state

update.

result o the cloud

on the device state

11 send he message e
; updte topic

device module devicetwin controller eventbus edgehub

5.send the device state
update.
result o be published

4. send device sate update:
result

communication modue

3. update device
sate detals 5. send device state update

result

Device State Update Operation





_images/device-updates-edge-cloud.png
CloudHub

5. Sync reported state to cloud

(—. EdgeHub

8. controller updates report

state

7.controller gets reported state

4.saves

feported stafe

Device Twin

e

3. sends reported

EventBus

state

6. Send reported state to cloud

—— ()

state

mosauitic’

'Kubernetes
API

Kubernetes Server Side

Cloud
Edge

1.sends

device reported sate|
Mapper





_images/device-upstream-controller.png
« Update device twin
reported property value

« Device twin property value
reported





_images/devicetwin-get.png
devicetwin

1. send the subscribed
‘message received on twin
get opic

twin module devicetwin controller eventbus

4. send the message to
be published on the
i result toplc:

3. get the twin
information from the context

communication modue

Devicetwin Get Operation





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to KubeEdge’s documentation!
        


        		
          Why KubeEdge
          
            		
              Advantages
            


            		
              Components
            


            		
              Architecture
            


          


        


        		
          Getting started
          
            		
              Dependencies
            


            		
              Get KubeEdge!
            


            		
              Deploying KubeEdge
            


            		
              Contributing
            


            		
              Community
            


          


        


        		
          Roadmap
          
            		
              2021 H1
              
                		
                  Core framework
                


                		
                  Maintainability
                


                		
                  IOT Device management
                


                		
                  Security
                


                		
                  Test
                


                		
                  Edge-cloud synergy AI
                


                		
                  MEC
                


              


            


            		
              2021 H2
              
                		
                  Core framework
                


                		
                  IOT Device management
                


                		
                  Edge-cloud synergy AI
                


                		
                  MEC
                


              


            


          


        


        		
          Deploying using Keadm
          
            		
              Limitation
            


            		
              Setup Cloud Side (KubeEdge Master Node)
            


            		
              (Only Needed in Pre 1.3 Release) Manually copy certs.tgz from cloud host to edge host(s)
            


            		
              Setup Edge Side (KubeEdge Worker Node)
              
                		
                  Get Token From Cloud Side
                


                		
                  Join Edge Node
                


                		
                  Enable kubectl logs Feature
                


                		
                  Support Metrics-server in Cloud
                


              


            


            		
              Reset KubeEdge Master and Worker nodes
              
                		
                  Master
                


                		
                  Node
                


              


            


          


        


        		
          Deploying Locally
          
            		
              Limitation
            


            		
              Setup Cloud Side (KubeEdge Master Node)
              
                		
                  Create CRDs
                


                		
                  Prepare config file
                


                		
                  Run
                


              


            


            		
              Setup Edge Side (KubeEdge Worker Node)
              
                		
                  Prepare config file
                


                		
                  Run
                


              


            


          


        


        		
          Upgrading KubeEdge
          
            		
              Backup
              
                		
                  Database
                


                		
                  Config(Optional)
                


                		
                  Device related(Optional)
                


              


            


            		
              Stop Processes
            


            		
              Clean up
            


            		
              Restore Database
            


            		
              Deploy
            


          


        


        		
          KubeEdge
          
            		
              Configuration Cloud side (KubeEdge Master)
              
                		
                  Modification of the configuration file
                


                		
                  Adding the edge nodes (KubeEdge Worker Node) on the Cloud side (KubeEdge Master)
                


              


            


            		
              Configuration Edge side (KubeEdge Worker Node)
              
                		
                  Manually copy certs.tgz from cloud host to edge host(s)  (Required for pre 1.3 releases)
                


                		
                  Create and set edgecore config file
                


              


            


          


        


        		
          CRI
          
            		
              containerd
            


            		
              CRI-O
            


            		
              Kata Containers
            


            		
              Virtlet
              
                		
                  Steps
                


              


            


          


        


        		
          Storage
        


        		
          Beehive
          
            		
              Beehive Overview
            


            		
              Message Format
            


            		
              Register Module
            


            		
              Channel Context Structure Fields
              
                		
                  (Important for understanding beehive operations)
                


              


            


            		
              Module Operations
              
                		
                  Add Module
                


                		
                  Add Module to Group
                


                		
                  CleanUp
                


              


            


            		
              Message Operations
              
                		
                  Send to a Module
                


                		
                  Send to a Group
                


                		
                  Receive by a Module
                


                		
                  SendSync to a Module
                


                		
                  SendSync to a Group
                


                		
                  SendResp to a sync message
                


              


            


          


        


        		
          Edge Controller
          
            		
              Edge Controller Overview
            


            		
              Operations Performed By Edge Controller
            


            		
              Downstream Controller:
              
                		
                  Sync add/update/delete event to edge
                


              


            


            		
              Upstream Controller:
              
                		
                  Sync watch and Update status of resource and events
                


              


            


            		
              Controller Manager:
              
                		
                  Creates manager Interface and implements ConfigmapManager, LocationCache and podManager
                


              


            


          


        


        		
          CloudHub
          
            		
              CloudHub Overview
              
                		
                  Get message context and create ChannelQ for events:
                


                		
                  Create http connection over websocket:
                


                		
                  Read message from edge:
                


                		
                  Write Message to Edge:
                


                		
                  Publish Message to Controllers:
                


              


            


            		
              Usage
            


          


        


        		
          Device Controller
          
            		
              Device Controller Overview
            


            		
              Operations Performed By Device Controller
            


            		
              Upstream Controller:
              
                		
                  Syncing Reported Device Twin Property Update From Edge To Cloud
                


              


            


            		
              Downstream Controller:
              
                		
                  Syncing Desired Device Twin Property Update From Cloud To Edge
                


              


            


          


        


        		
          Edged
          
            		
              Overview
            


            		
              Pod Management
            


            		
              Pod Lifecycle Event Generator
            


            		
              CRI for edged
              
                		
                  Why CRI for edged?
                


              


            


            		
              Secret Management
            


            		
              Probe Management
            


            		
              ConfigMap Management
            


            		
              Container GC
            


            		
              Image GC
            


            		
              Status Manager
            


            		
              Volume Management
            


            		
              MetaClient
            


          


        


        		
          EventBus
          
            		
              Overview
            


            		
              Topic
            


            		
              Flow chart
              
                		
                  1. eventbus sends messages from external client
                


                		
                  2. eventbus sends response messages to external client
                


              


            


          


        


        		
          MetaManager
          
            		
              Overview
            


            		
              Insert Operation
            


            		
              Update Operation
            


            		
              Delete Operation
            


            		
              Query Operation
            


            		
              Response Operation
            


            		
              NodeConnection Operation
            


            		
              MetaSync Operation
            


          


        


        		
          EdgeHub
          
            		
              Overview
            


            		
              Keep Alive
            


            		
              Publish Client Info
            


            		
              Route To Cloud
            


            		
              Route To Edge
            


            		
              Usage
            


          


        


        		
          DeviceTwin
          
            		
              Overview
            


            		
              Operations Performed By Device Twin Controller
              
                		
                  Sync Metadata to/from db ( Sqlite )
                


                		
                  Register and Start Sub Modules
                


                		
                  Distribute Message To Sub Modules
                


                		
                  Health Check
                


              


            


            		
              Modules
              
                		
                  Membership Module
                


                		
                  Twin Module
                


                		
                  Communication Module
                


                		
                  Device Module
                


              


            


            		
              Tables
              
                		
                  Device Table
                


                		
                  Device Attribute Table
                


                		
                  Device Twin Table
                


              


            


          


        


        		
          EdgeSite
          
            		
              Abstract
            


            		
              Motivation
            


            		
              Assumptions
            


            		
              Architecture Design
            


            		
              Advantages
            


            		
              Getting Started
              
                		
                  Setup
                


                		
                  Steps for K8S (API server) Cluster
                


                		
                  Steps for EdgeSite
                


                		
                  Deploy EdgeSite (Worker) Node to K8S Cluster
                


                		
                  Deploy Application
                


              


            


          


        


        		
          Bluetooth
          
            		
              Introduction
            


            		
              Running the mapper
              
                		
                  Building the bluetooth mapper
                


                		
                  Deploying bluetooth mapper application
                


              


            


            		
              Modules
              
                		
                  Action Manager
                


                		
                  Scheduler
                


                		
                  Watcher
                


                		
                  Controller
                


              


            


            		
              Usage
              
                		
                  Configuration File
                


                		
                  Runtime Configuration Modifications
                


              


            


          


        


        		
          ModBus
          
            		
              Introduction
            


            		
              Running the mapper
              
                		
                  Building the modbus mapper
                


                		
                  Deploying modbus mapper application
                


              


            


            		
              Modules
              
                		
                  Controller
                


                		
                  Modbus Manager
                


                		
                  Devicetwin Manager
                


                		
                  File Watcher
                


              


            


          


        


        		
          Contributing
          
            		
              Code of Conduct
            


            		
              Community Expectations
            


            		
              Preparation
            


          


        


        		
          Governance
          
            		
              Principles
            


            		
              Code of Conduct
            


            		
              Community Membership
            


            		
              Community Groups
              
                		
                  Special Interest Groups (SIGs)
                


              


            


            		
              CLA
            


            		
              Credits
            


          


        


        		
          Maintainer
          
            		
              Member
              
                		
                  Requirements
                


                		
                  Responsibilities and privileges
                


              


            


            		
              Approver
              
                		
                  Requirements
                


                		
                  Responsibilities and Privileges
                


              


            


            		
              Maintainer
              
                		
                  Requirements
                


                		
                  Responsibilities and privileges
                


              


            


            		
              Owner
              
                		
                  Requirements
                


                		
                  Responsibilities and Privileges
                


              


            


          


        


        		
          Feature Lifecycle
          
            		
              Alpha
              
                		
                  Graduation Criteria
                


              


            


            		
              Beta
              
                		
                  Graduation Criteria
                


              


            


            		
              GA
              
                		
                  Graduation Criteria
                


              


            


          


        


        		
          Device Management
          
            		
              Notice
            


            		
              Device Model
              
                		
                  Device Model Sample
                


              


            


            		
              Device Instance
              
                		
                  Device Instance Sample
                


                		
                  Customized Protocols and Customized Settings
                


                		
                  Data Topic
                


              


            


            		
              Device Mapper
            


            		
              Usage of Device CRD
            


          


        


        		
          MQTT Message Topics
          
            		
              Subscribe Topics
            


          


        


        		
          Unit Test
          
            		
              Unit Test
            


            		
              Mocks
            


            		
              Ginkgo
            


            		
              Writing UT using GoMock
              
                		
                  Example : metamanager/dao/meta.go
                


              


            


          


        


        		
          Bluetooth Mapper E2E Test
          
            		
              Steps for running E2E tests
              
                		
                  Test Server Creation
                


              


            


          


        


        		
          EdgeMesh guide
          
            		
              Limitation
            


            		
              Environment Check
              
                		
                  DNS Order
                


                		
                  IP Forward Setting
                


              


            


            		
              Usage
            


            		
              Sample
            


            		
              Model
            


            		
              Flow
            


          


        


        		
          Memory Footprint Test
          
            		
              Why measure memory footprint?
            


            		
              KPI’s measured
            


            		
              How to test
              
                		
                  Test setup
                


                		
                  Creating a setup
                


                		
                  Steps
                


              


            


          


        


        		
          FAQ
          
            		
              keadm init failed to download release
            


            		
              Container keeps pending/ terminating
            


            		
              Where do we find cloudcore/edgecore logs
            


            		
              Where do we find the pod logs
            


          


        


      


    
  

_images/edged-overall.png
Pod Management Probe Management Volume Management

Pod Lifecycle Event Container Garbage. Image Garbage
Generator Collection Collection

‘Secret Management Conftap) Container Runtime

Management

Pod Status
Management

MetaClient






_images/edgemesh-test-env-example.png
edge-node-A

edge-node-B

congfigure port mapping manually on portIN at

host by iptables rule






_images/devicetwin-update.png
1. twin update
message

2.sendto
device twin

twin module devicetwin controller edgehub

1. send the message recelved
on the devicetwin

update topic

5. gt update result

eventbus
communication modue

4.update devicetwin
detalls

6. send the update
result 0 be published.

Devicetwin Update Operation





_images/edged-cri.png
Docker Runtime
Configuration
inltialization and Lot
execution

CRIruntime

configuration CRI Runtimes
inltialization and CRI (Containerd, crio
execution etc)

k8s Kubelet






_images/eventbus-handleResMsgToClient.jpg
send response,

send response

edgehub

Topic: events/upload/#
Topic: SYS/dis/upload_records/+

deviceTwin

send response

event/node/+/membership/get/

Topic:event/device/+/twin/+
e/+/state/update/s,

Topicievents/de:

send
response

Message
broker

eventBus
send

response

Eventbus sends response messages to external client





_images/kubeedge_arch.png





_images/endtoend-test-flow.jpg
edgenode A edgenode &

controller flow: ————#
data flow: ————

Tiost_por
:






_images/eventbus-handleMsgFromClient.jpg
send message
send message

Topic ts load/#
sl opic eventsapoad/ =
Topics SYS/dis/upload_records e
Message
eventBus (7 g broker
send message message
Topicievent/node/+/membership/get
deviceTwin events/device/+/state/update
event/device/+/twin/+

Eventbus sends messages from external client





_images/membership-detail.png
devicetwin

1. send the message recelved
‘onthe device update topic

membership module devicetwin controller eventbus

5. send the membership.
details 1o be published

4. send membership
detai result.

communication modue

3.Add the devices
mentioned in the message
& remove thatdevice £ it
does not already exist in the cache

‘Membership Detail Operation





_images/membership-get.png
devicetwin

1. send the subscribed
‘message received on membership
get opic

membership
module

devicetwin controller eventbus

4. send the message to
be published on the
et membership result oplc

3. get the lst of
devices from the context

communication modue

Memebership Get Operation





_images/membership-update.png
1. Membership update initated.
from cloud

2. Message sent to device twin

membership module devicetwin controller

edgehub

5. send the membership
update result to be published

5.send membership
update result

communication modue eventbus

4. update membership

detalls in database as
well in the cache.

Membership Update Operation





_images/meta-query.png
Remote Query Operation
From Edge To Cloud

Local Query Operation At Edge





_images/meta-update.png
1. update
‘message . send resp

3. check if resource unchanged

2. send to
‘meta manager

Update From Cloud To Edge

5. send

2. check if resource unchanged Update 6. get response

4. send update
to cloud

‘Update From Edge To Cloud





_images/meta-delete.png
Delete Operation





_images/meta-insert.png
Insert Operation





_images/pod-addition-flow.png
Add pod
iessage to-
edge node

EdgeHub

| Postaddpod
[— messageto

MetaManager

edged

|
| |
postaddpod |
b— message to
edged |

EdgeD

Message

Handler

|

|

|

|

Get the pod information |
from message content

T and add it to pod manager.>:

same pod information i added to pod

Probe
Manager

Pod Manager

manager.

namespace/podname as the ke
1

|
|
|
|
|
|
|
|
|
‘Then pod information is added to

[————pod addition worker queue. tis added with s assigned
y.

Pod Addition

Queue

|
|
|
|
|
|
|
|
|
|

Pod Add Worker
Routine

Keep awatch on
addition queue

(& Get pod from queue-

“queue for the pod

|
|
|
|
|
|
|
|,< Mark as Done in
|
L

1. Get pod info from pod manager
2. Create pod directory

3. Attach and mount volumes it
configured

4. Get secrets i configured

5. Ensure image exists and if not
download using container runtime|
6. Start the pod using container
runtime.

7. Markit as Done in pod addition
queue.

1 N A PPN T PN






_images/pod-deletion-flow.png
Delete pod
iessage to-
edge node

EdgeHub [l MetaManager

|
| Postdeletepod |

r edged
|
|
|
|
|
|
|
|
|
|
|
|

messageto Py

EdgeD

Message

Handler

edged |

Pod Manager

Delete the pod |
from pod manager P

|
Terminate the pod by setting

Status Probe
Manager Manager

the status of the pod as terminated >,

|
T
|

|

|

|

|

|

|

|

|

|

|

Remove the probes allocated for the pod |
and clear the cached results >,
|

|

t

|

|
|
T
1






_images/model.jpg
service






_images/pleg-flow.png
Status

Manager

Pod Container
Manager Manager

Scan every 1 sec b Getall pods——pl

| |
[€— — — —Retums podist— — — — —

Looping for each || et pod statu
pod |

77777777 Returns with current pod status — — — — — — — —

Update pod statu: —
| P s )
UpdatePodstatus modifies the given
Podstatus with the appropriate Ready
state for each container based on
container running status, cached
probe results and worker states

| IR A N, 4 ENE—.

77777 —Returns updated pod status with readyness factor— — — — — —

Sets pod status with status manager-

i i e B
P [ . AP S

T
|
]
1
]
|






_images/pod-update-flow.png
Update pod
message to
edge node

EdgeHub

| Postupdate pod

|

gt
message to

edged L

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

MetaManager

Post up:

mess:
ed

EdgeD

ate pod

ge to

Message

Handler

--9-

;|

Update pod information

Pod Manager

‘with pod manager.

S

same pod information i added to pod
manager.

Probe

Manager

|
|
|
|
|
:
|
|

Pod Deletion

Then based on deletionTimestamp field, pod information is added to |

pod adtion (if deleteTimeStamp is ni)or deletion worker queue. —J

Itis added with its assigned namespace/podname as the key.
1

Queue

Pod Remove
Worker Routine

For deletion worker
case, keep a watch

- Get pod from queue-

_Markas Donein _
‘queue for the pod

1. Get pod info from pod
manager

2Terminate the pod using
container runtime.

For addition worker
case, keep a watch
on addition queue

| PSP | PN PSPPI NP IS

Process is same as mentioned in
earlier flow diagram of pod addition

oo






_images/query-configmap-from-edged.png
| Use MetaClient Query service © pl
gel configmaps from Me'aMznﬂgE

m m S
|

|
ery to MetaManager for configmap:
Queries configmaps in local DB

!
If configmaps already saved in |
—  MetaManager'slocal DB, — —

respond the same. |

1

A

Responds to EdgeD for
 further pod deployment”

from Cloud via EdgeHub
|
|
|

-
|
|
|
|
|
|
| Insert the new configmaps
| received from cloud to local DB
|
|

!

Send configmaps data to MetaClient— —

 further pod deployment”

RespondstoEdgeDfor | |
| |

| i confy
gmaps notpresent, query__

__ Response from Cloud __ _ _
’éi with configmaps data

——auery for configmaps to Cloud
K
-

_Response from Cloud
with configmaps data’

PPN |





_images/pod-status-manger-flow.png
m m S

Every 10 secs | | |
I 1 1 1
For m-wnd J | | | |
Send pod status—p! | | |
| | | | |
| i send pod status »r | |
| | | | |
| | 1. Queries pod status from local DB | |
| | 2. Checkif the new pod status and | |
from db s same.
! ! If pod status is same with ! | |
|_ _Responds same Ok message_ K<~ — —MetaManager's local DB,- — — | |
< to EdgeD -1 respond OK | |
| | If pod status differs, then | |
| | insert/update itin local DB | |
¢ Post update message to,
| | Cloud via EdgeHub > |
| | | Post update message to_
Cloud
| | | | |
| (& — — Hespond OKto EdgeD— — — — | |
Igg esponds same Ok message__| | | |
I ¢ I I I I
| | | | |
| | | | |
1 1 1 1 1
1 1 1 1 1
| | | | |






_images/route-to-edge.png
1. Receive message
(websocket)

Device Twin

Meta Manager

2. Send message
(Beehive Framework)

2. Send message
(Beehive Framework)

2. Send message
(Beehive Framework)

Event Bus





_images/secret-handling.png
m S
Add/DeIeIe/updme

secret message
to edge node

Post secret

,—add/dele1e/updme—>|

message to edged

post
dd/del
messagt

secret

Message
Handler

te/update—pp!

to edged

|
|
|
|
Add secret extracted |
from message content P

Update/Delete
secret extracted
from message content

b—nsert secret to cach
|
|

-
7

et secret from cache—Pb)

|

|

| _Return secretdata __|
| from cache |
| I Exists |
| ¢ Update/oelete
L | secret from cache’ |
1 1






_images/query-secret-from-edged.png
m S m m
Add pnd |

Response from Cloud__

with secret data

b message to——p! |
| edge node | Postadd pod | I |
messageto ——b)
! edged Postadd pod ! !
| | message to ————pl |
! ! ! edged Extracts secrets from !
| | | imagepullsecrets from |
| | | pod spec |
| | | | Use Metalient Query senvice to__ |
| | | got secret from Metamanager P
| [ Query to MetaManager for secret— — — — — — — -
| | | | |
| | Queries secret | |
| | ¢ If secret already saved in MetaManager's local DB, R
respond the same
! ! ! ' RespondstoEdgenfor _ _ |
| | | l< ‘further pod deployment !
IF secret not present, query_
: K< rom loud i Edetiub JI
< Query for secret to Cloud—
Sl a I
|
|

| ke
ponse from Cloud
with secret data >,
Insert the new secret
received from cloud to local DB

|
|
! : ds to EdgeD

__ _RespondstoEdgeDfor _ _
: :< further pod deployment JI





_images/route-to-cloud.png
2.Send message
(websocket)

Device Twin

Meta Manager

1. Receive message
(Beehive Framework)

1. Receive message
(Beehive Framework)

1. Receive message
(Beehive Framework)

Event Bus





_images/sync-to-cloud.png
6. send latest devicetwin|
information to cloud

devicetwin 1. send the subscribed
‘message received on twin

cloudsync topic

2.send msg,

twin module devicetwin controller eventbus edgehub

5.send the twin resul to
be sent o the cloud

4. get the synced twin
result

communication modue

. Sync the device twin
information

Devicetwin Cloud Syne Operation





_static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/favicon.png





_static/file.png





_static/down.png





_static/kubeedge-logo-only.png





_static/minus.png





_images/DownstreamController.png
CloudPart

Rest Client
s

EdgePart

Update podconfightap
Add
Delete

Creates manager to hande (pod,configmap,secret)
Locates confightap and Secret to be send to which node

TopWebsocket





_static/up.png





_static/up-pressed.png





_static/plus.png





